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Since modern experimental physical science
started with the work of Bacon, no one who
published quantitative results without a
credible estimate of accuracy would have
been taken seriously. In computing work,
much of what we do amounts to numerical
experiments...yet it has become commonplace
for computer users who are otherwise
competent scientists to generate and even to
publish computational results without even a
gesture toward quantification of their
numerical accuracy.

N. Metropolis

"...it is an order of magnitude easier to

write two sophisticated quadrature routines
than to determine which of the two is
better."-

J. Lyness at IIP '71
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Section 1

THE NATURE OF SOFTWARE TESTING

Software is a logical rather than a physical product. The
dramatic decrease of hardware costs by a factor of two every two or

three years since 1945 has caused the complexity in the logic rather
than that in the components to become the principal bottleneck in
the development of hardware-software systems. The decade of the
seventies emphasized widespread dissemination of and experimentation
with software engineering techniques in order to define logical
constraints to utilize the richness and complexity of large computer
systems made possible in the changing technological environment.
Design techniques such as top-down, bottom-up, structural design,
programming by operational clusters, hierarchical
input-process-output (HIPO) and pseudocode; and programming language
characteristics such as data types, data structures, control flow
mechanisms, structure of and communication between subprograms have

all had significant impact upon the software development process,
providing some degree of control and visibility to its development.
The art of programming has changed into a scientific discipline in
these ten years, rivalling long-established branches of engineering

in its breadth and scope and theoretical foundations. Program
testing, on the other hand, has remained a collection of
not-quite-scientific methods and beliefs that have been likened to a

black-art. It is only in the past five or six years that
theoretical foundations have been laid for a disciplined approach to

assuring quality of programs.

There are two complementary developments in order to extend the

scope of software engineering to include quality

assurance--verification and validation. The aim of program
verification is to establish that computer programs are consistent

with detailed specifications. This amounts to program proving.

Program validation, on the other hand, attempts to establish
empirically the existence of program function and the absence of

unwanted function. As a result of the developments in the past six

years, program testing based on systematic path analysis of the

structure of the program, has become possibly the only effective
means to assure quality of a software system of non-trivial

complexity.

THE ECONOMICS OF SOFTWARE TESTING

In 1978 the cost of software development, testing and

maintenance for the Government was estimated at about $8 billion,
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including $4 billion for defense applications. The Air Force alone
spends about 80-90% of computer systems procurement costs for
software, as compared to about 15% in 1955 (46). WWCCS was
estimated to involve .75 billion dollars for software, about 10
times its hardware cost. It is enlightening to note the
distribution of this cost in software development stages of program
analysis and design, implementation, integration and testing. Fig.
1-1 below shows the cost distribution of six large software projects
(1).

Breakdown of Development Costs for Selected Systems

Analysis and Coding and Integrating
Design Debugging and Testing

SAGE 39% 14% 47%
NTDS 30% 20% 50%
GEMINI 36% 17% 47%

SATURN V 32% 24% 44%
OS/360 33% 17% 50%
AVERAGE 34% 18% 48%

Fig. 1-I

An average of 47.6% of the total development cost was spent
after the code had been developed, in Integration and Testing. The
following chart illustrates the relative costs of software over its
life cycle for typical large scale programs (47).

Typical Breakdown of Software Costs

Tsaing

Cod-ng
Design

Fig. 1-2
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The costs of maintenance and testing account for approximately
75% of the life cycle cost of software. The SAGE system had an
average software maintenance cost of approximately 20 million
dollars per year after it had been in operation for ten years,
compared to an initial development cost of 250 million dollars. In
most of the releases of IBM OS/360 operating system, approximately
60-76% of the costs were incurred after the system was made
operational (1).

It is clear that about half the total life cycle cost of
software systems is spent in generating the software and the other
half in making sure that it performs what it is expected to do.

Very simply, this says that software actually performs correctly by
having been tested into that state, and that testing is not done in
a particularly cost effective manner. In fact, as Ed Miller points

out, it is quite clear that most of the reliability in current
software systems is installed there by hammer and tongs methods,
brute force, and "try it and fix it until it works" methods (40).

THE INADEQUACY OF CURRENT SOFTWARE TESTING PRACTICES

The occurrence of a system failure due to software is just as
real to the user as when due to hardware. A software error in the
on-board computer of the Apollo 8 spacecraft erased part of
computer's memory. Eighteen software errors were detected during
the ten-day flight of Apollo 14. In the aggregate about $660
million dollars were spent on software for the Apollo program.
Checking of this software was as thorough as the experts knew how to
make it. Yet, almost every major fault of the Apollo program, from
false alarms to actual mishaps, was the direct result of errors in
computer software (6 1). The U.S. Strategic Air Command's 465L
Command System, even after being operational for 12 years, still

averages one software failure per day. The rescheduling of the
takeoff of the space shuttle Columbia due to software malfunctioning
earlier this year is a striking example of the fact that the
situation has not improved much.

As the trend towards larger and larger computer systems

continues, the consequences of software unreliability become
increasingly severe. Software delays during testing often cause
delays in a system becoming operational. A six month delay

translates into a 100 million dollars in loss of services based upon
a projected seven years operational life of a 1.4 billion dollar
project (1).
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The evolutionary nature of current large-scale software
systems, the complexity due to the variety of function, the lag of
several years between system requirements definition and system
delivery, and the diversity of the operational environment are some
of the factors that contribute to the unreliability problem for
software.

RELATIONSHIP BETWEEN ERRORS AND PROGRAM COMPLEXITY

Testing costs and program unreliability are increasing
functions of the number and type of errors in a program (1). The
number and type of errors in a program are related to the complexity
of the program. In general, the complexity of an object is a
function of the relationships among the components of the object.
The complexity of a program design is a function of the
relationships among the modules; the complexity of a single module
is a function of the connections among the program instructions
within the module.

The complexity of poorly structured large systems increases
exponentially with their size. To increase the reliability and
decrease testing costs, program complexity should be reduced. Two
principles are identified from general systems theory to combat

complexity (6):

(i) independence

(ii) hierarchical structure.

To minimize complexity, maximize the independence of each
component of a system. Basically, this involves partitioning the
system so that the high frequency dynamics of the system fall within
single components and the inter-component interactions represent
only the lower frequency dynamics of the system.

A hierarchical structure allows for stratification of a system
into levels of understanding. Each level represents a set of
aggregate relationships among the parts in the lower levels. The
levels may be defined by their functional specifications. The
concept of levels allows one to understand a system only to the
necessary level of detail. It brings out clearly the interfaces

between components at different levels, and allows one to look at
the lowest levels of detail within the hierarchy without affecting
the top level structure.

In an ideal hierarchically-structured modular system, the
complexity at any decision point should be bounded by a constant
independent of the size of the system, determined only by the number
and complexity of modules immediately affected by the decision.

4



THE PURPOSE OF SOFTWARE TESTING

Testing is the controlled analysis and execution of a program
to validate the pre-specified presence of some program property.
The notion of controlled execution forms the basis for a systematic
metnodology for internal measurement of the behavior of the program.

As a minimum, program testing serves to prove the presence of
function. When performed systematically, it can also serve to
demonstrate the absence of unwanted function.

Although testing can be used both as a post-developmental
quality assurance metbod and as a preventive technique, in this

report we will restrict ourselves to testing methodology for
programs or modules which have already been coded. In this case,
the purpose of software testing is simply to detect errors in the

program which is to be tested.

HARDWARE VS. SOFTWARE TESTING

The subject of software reliability has been extensively
researched for over twenty years. The reason that there has been no
consensus on its characteristics, much less on any of its measures,
is that several well-intended Reliability/Availability/-
Maintainability (RAM) professionals had an MTTR
(mean-time-to-repair) or MTBF (mean-time-between-failure) concept of

software reliability. John D. Cooper and Matthew J. Fisher in their

book (11) on Software Quality Management, published in 1979, discuss

the problem with using traditional hardware RAM techniques for
software. Software is different from hardware in that it works the
same way every time, it never wears out or deteriorates, spare parts
for software are inconsequential. So software reliability is,
simply that programs should operate in their operational environment
as they are expected to--correctly! It is therefore the confidence
in the correct performance of the program that must be established.

In fact, in 1979, Bev. Littlewood( 3 5 ) formally established
that there is something fundamentally wrong in applying the hardware

notions of MTTR and MTBF to computer programs, for these concepts

may not even exist in general. The argument rests on fairly subtle

mathematical points, which have important practical implications.
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For hardware there is justification for making the fundamental
assumption that the failures are Poisson distributed (3). The time to
a failure then follows an exponential law, and the mean time to
failure is finite. In such a case the MTBF completely describes the
failure behavior of the hardware system. In the case of software,
all the failures are inherently present in the system as errors, and
there is no deterioration of components, so the distribution of
failures as they are executed, may not even have finite moments. In
this case MTBF cannot even be assigned a practical meaning. Such a
situation is most likely to occur for software for although software
errors occur quite rapidly just after it becomes operational, if
modifications are not required, the failures become quite sparse, as
can be observed in the failure data, from seven programs, depicted
below (2). These data were collected for a supervisory program
developed for a Government agency by a manufacturer of an operating
system. Even though the time between failures may be finite, the
expected average of these times after the initial operational phase
is quite likely infinite.

Note: Hesse's raw data was in terms of program changes, and the
data in this table and the Hesse paper were adjusted by
dividing by an estimated 17 changes per bug.

6



Number of Bugs Removed Per Month for Seven Different Large Programs
(from Hesse (1972) and Shooman (1972)).

Application A Application B Application C Application D
240,000 Inst. 240,000 Inst. 240,000 Inst. 240,000 Inst.

Month Bugs Buits Buits Bugs

1 514 905 235 331
2 926 376 398 397
3 754 362 297 269
4 662 192 506 296

5 308 70 174 314
6 10k --- 55 183

7 60 158
8 ---.---. 368
9 --- 337

10 ---.--.. 249
11 --- 166

12 108

13 .........- 31

Total 3,270 1,905 1,725 3,207
Changes

AVG/ 545 381 246 247
Montb

Supervisory A Supervisory B Supervisory C
210.000 Inst. 240.000 Inst. 230,000 Inst.

Month Bugs Bugs Buis

1 110 250 225
2 238 520 287

3 185 430 497

4 425 300 400
5 325 170 180

6 37 120 50

7 5 60 --

8 -- 40 --

Total 325 1,890 1,639

Changes

AVG/ 189 236 273
Month

Fig. 1-3
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The fundamental assumption of Poisson distributed failures,
therefore, does not hold for software. It remains an open question
whether any failure law can be developed which reflects the nature
of software failures. In the absence of such knowledge, adoption of
hardware concepts for software must be avoided.

There seems to be a growing consensus that the characteristics
of software reliability as software quality must be designed and
built into the structure of the program (11).

A more subtle problem arises in the calculation of
availability, i.e., the actual fraction of time the software system

will be available. If the behavior of the system is modelled as
explained in (34), by an alternating renewal process with the two
types of intervals representing operation and repair times, then the

observed fraction of a given interval of time (O,T) that the system
operates has a finite sample expected value. But the sample
expected value may not converge, as T -oo, to the actual fraction of
time that the system will be available. Of course, if both KTBF and
MTTR were finite, then it can be shown that (34, 35)

LimOperating time in (0,T) = MTBF
T- O T MTBF + MTTR

But the left side quantity may converge even if MTBF or KTTR
are not finite. It cannot then be guaranteed to converge to the
actual fraction of time that the system will be available.

Since, for a given program, it is not possible to prove the
finiteness of MTBF, it is meaningless to make any inference about
RAM by single numerical measures like sample MTBF. In fact,
Bev. Littlewood (35) suggests percentiles of time to next-failure

distributions for gaining more insight into the distribution of
failures.

CURRENT APPROACHES TO PROGRAM VALIDATION

Prior to the Program Test Methods Symposium in 1972, whatever
art of program testing existed was a closely held secret among
knowledgeable programmers. But in the past few years several

studies and much important theoretical work have produced results
which have changed the very nature of software testing. The ad hoc
approach of testing software as a black box via a set of trials

determined by subjective judgement limited by time and resources is

8



now being replaced by an integrated, systematic discipline which
provides control and visibility into the structure of the program
and where scope and reliability are governed by a formal requirement
of the specified level of testing and acceptance criteria. Programs
are being written which can be used economically to measure the
quality of other programs. The fundamental questions of "what to
measure?" and "how to measure it in a cost effective way?" are now
being answered. There are three basic approaches being taken:
Program Proving, Path Testing, and Symbolic Testing.

Program Proving

The program proof process requires the development of a set
of verification conditions followed by their detailed
analysis and proof. The proof may be done by a mechanical
theorem prover.

Program proving methods, at present, have some severe
limitations. Proofs can provide assurance of correctness
for a program only if the following are true (22).

1) There is a complete axiomatization of the entire running
environment of the program-language, operating system,
and hardware processors.

2) The processors are proved consistent with the
axiomatization.

3) The program is completely and formally implemented in
such a way that a proof can be performed or checked
mechanically.

4) The specifications are correct in that if every program
in the system is correct with respect to its
specifications, then the entire system performs as
desired.

These requirements are far beyond the state of the art of
program specification and mechanical theorem proving, and we

must be satisfied in practice with informal specifications,
axiomatisations, and proofs. Then problems arise when
proofs have errors, specifications are incomplete, ambiguous

or unformalized. The proof of correctness approach to
validation is, therefore, not currently useful except for
small combinatorial algorithms. An incorrect program can be

proved correct--perfectly properly--relative to an incorrect

set of assumptions (22).

9
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Despite the limitations, attempts at program proving are
becoming essential to the development of large scale
programs which must be understood before being proven
correct. Also facilitating provability sets a worthy
standard for program structure and specifications.

Path TestinR

Much of the theory of path testing arises from two forms of

graph theory based modelling of program properties; control
flow and data flow. Testing all paths through the graph of
a program is usually impractical, even for small programs.
Input data about appropriate test forms which will exercise
a given flow of the program is inferred directly from the
analysis of the internal structure of the program. Path
testing seeks to exercise different paths through the graph
of a program in a controlled and systematic way in order to
develop metrics for the effectiveness of the test program.

Path testing is usually undertaken to achieve certain goals
of program coverage like all statements or all branches
tested at least once.

Studies in the reliability of path testing are of
theoretical as well as practical interest because they
provide an upper bound on the reliability of strategies that
call for testing of a subset of program paths.

Program faults which cause a program with an error to differ
from one that is perfect can be put into two categories:
case errors and action errors. A case error exists when

there is a fault in a program's decisional structure which
causes it to differ from the correct program in a way that
drastically changes the implied partitions of the input
space, i.e., the so-called program "cases." An action error
exists: (a) in the absence of a case error and (b) when a
wrong output would be produced when the program is executed
with valid test data for that case.

The pioneering work of Goodenough and Gerhart, and
subsequent work of Howden in the past six years has
established that for computer programs which satisfy certain
structural constraints, program testing is the full
equivalent of a proof of correctness. Reliable tests can be
derived for the rather wide class of programs that contain
no case errors. The general character of reliable path

testing seems to suggest the likelihood of extending the
classes of program faults against which testing would be
effective, although this may require the use of special
programming devices in Eme cases.
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As a result of these developments, path testing has become
possibly the only effective method to ensure the quality of
a software system of non-trivial complexity. But many of
the techniques that are used need serious further
development--both theoretical and empirical, through
accumulation of experiences in practical applications.

The goal of path testing is the same as that of program
proving: to guarantee the absence of errors in a computer
program. Whereas program proving is a reductive process,
path testing is inherently a constructive process since
every new pat" tested contributes information about the

quality of the program being tested. Path testing has the
ad-antage of providing accurate information about a
program's actual behavior in its actual environment, so
,Trors found during testing, like infinite loops or division
wy zeri, can be corrected by human intervention. A proof is
imited to conclusions about behavior in a postulated
%iionment. Testing and proving are complementary methods

fot decreasing the likelihood of program failure.

Symbolic Testing

Symbolic testing systems are a rather recent innovation that

combine features of path analysis and a limited form of
program interpretation. Instead of dealing with actual
input values, a symbolic testing system acts on the formulas

that result from considering the tree of possible program
flows that begin at the invocation point in a program. The
tree is pruned as much as possible; that is, infeasible
paths based on data constraints are removed as soon as they
are discovered to be infeasible. In this way the growth of
the tree is kept within reasonable limits and the system can
handle practical sized programs. There is a close
relationship between the operation of a symbolic testing
system and a program prover: symbolic analyses simulate
"execution" of a program path that has rather thoroughly
known properties. It is expected that symbolic testing
techniques will grow in importance in future years,

potentially to a point where they form one of the main tools

supporting the program testing activity.

A SOFTWARE TEST METHODOLOGY

The framework for a formal theory of software testing was
developed by Dijkstra. In 1975, Goodenough and Gerhart proved the

fundamental theorem establishing that programs which meet certain

ii
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structural criteria can be proved correct by program path testing
(22). This theory, extended by Howden (27, 2 8 )has brought software
testing into the domain of sofware engineering. For top-down

structured programs, path analysis techniques have been developed
which utilize the hierarchical structure of the program, providing
control and visibility into its structure.

In this report a quantitative methodology, based on path
testing, will be developed, as a natural extension of software
engineering techniques to the testing phase of software development.
Test metrics are developed to provide control and visibility into
the structure of the program. Test objectives are quantified in
terms of program path coverage, and quantitative acceptance criteria
are developed. Automated tools for path analysis are discussed.
Application to Air Force programs is discussed in Section 5.

An application of this methodology was made to the Automatic
Speaker Verification Algorithm for the BISS/ECS (Base and
Installation Security System/Entry Control System). Details of this
application are being written up as a separate working paper.

12



Section 2

PATH ANALYSIS

In the path analysis testing strategy different paths through a
program are analyzed which exercise the control structure and the
data flow through the program. The program is modeled as a graph
consisting of a set of program flow paths which, if executed by a
set of test data T, would reveal an error along a path if the
program was incorrect.

The execution-time theory of software testing advocated by
John D. Musa (45), where a program is made to execute in its natural
environment for a specified amount of time determined only by the
available resources, or similar theories, treat a computer program
as a black box and ignore the structure of the program. As a
result, the most commonly traversed paths through the program get
tested over and over again, providing no additional information
about the correctness of the program and wasting valuable time and
other resources. On the other hand, several of the less frequently
traversed paths do not have much of a chance of being tested. When
the program becomes operational and a less frequently traversed path
is encountered, the program may contain an error along this path,
and despite considerable expense in time and resources, the program
is likely to cause a system failure. A more enlightened "white-box"

approach models the logic and data flow in a program using graph
theory techniques. The objective of the graph theory approach to
analyzing programs is to infer data about appropriate test forms
directly from the internal structure of the program. This model

allows relatively simple measurements of the thoroughness of testing
accomplished up to any point during the test program. It provides a

visibility into the program so that appropriate analysis can be
carried out to allocate resources optimally and to eliminate any
redundant testing. Also test effectiveness measures can be
developed so that the amount of testing required for a desired
degree of confidence in the correctness of the program can be

determined. These measures are sensitive to cost and software
criticality factors. Such an approach to software testing will now
be developed.

GRAPH THEORY DEFINITIONS

The technology of program testing is strongly rooted in the
notion of directed graphs. A directed graph or digraph consists of
a set of nodes and edges that are oriented to indicate flow from the

13
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originating node to the terminating node. For a graph G consisting

of nodes V ...... V and edges E1J for (i,j) in some subset of

1,i..,NI xj1.... N , the following definitions are made:
Predecessor and Successor Nodes. A node Vi is a predecessor of

node Vi+1 if there is a directed edge E from Vi to Vi+1 * Vi+1

is then called a successor of Vi .

Indegree and Outdegree of Nodes. The number of incoming edges

to Vi is its indegree. The number of outgoing edges from Vi

is its outdegree.

Entrance and Exit Nodes. A node Vi is an entrance node for the

graph G if Vi has no predecessors in G. Vi is an exit node if

Vi has no successors in G.

Decision Node. Any node which has more than one outgoing edge
is called a decision node. The entry and exit nodes of a
digraph are also decision nodes.

Subgraph. A portion of a graph containing a subset of edges
and nodes of the graph and which is itself a graph, is called
a subgraph.

Reduced Graph. When each node is a graph which has outdegree
one, except the entry node, is identified with its successor
node and the edge between them is dropped, then the graph is
said to be reduced.

Path. A sequence of nodes

Vil, V12 .... ,Vin

is called a path if each Vik has the property that Vik-l is a

predecessor node of Vik and Vik+l is a successor node of V ik*

V is called the entry node for the path and V is called the
il in

exit node. If the entry and exit nodes of a path coincide with

the entry and exit nodes of the graph G, then the path is called

a complete path.

Length of a Path. The length of the path

V ill V12 .... ,Vin

is defined to be n-l.

DD Path. A path in a reduced graph is called a

14



Decision-to-Decision path or a DD path.

Segment. A DD path of length one is called a segment.

Cycles. If the entry and exit nodes of a path coincide, then
the path is called a cycle or a loop.

A cycle is called an (m,n) cycle if its entry node has indegree
m and outdegree n.

Connected Graph. A graph is connected if there is at least one
path between very pair of nodes.

Tree. A digraph is called a tree if it has a single entry node
and each node except the entry node has indegree one.

Subtree. A subgraph of a tree which is also a tree is called a
subtree.

Leaf. A subtree consxsting of only two nodes one of which is
an exit node is called a leaf.

The above definitions allow one to describe a program's
structure, decompose a program into simpler substructures, determine

whether there exists unreachable code, and to develop metrics for

the effectiveness of a software testing strategy.

15



These definitions are illustrated below.

a

2

b b
4

3 d
8

5

46

he dirpg ie abov 6a 0nds() h de fti

6 g

f 7 8 b7

ok ede 9 ed

100

GRAPH G SUB-GRAPH G1  SUB-GRAPH G2  SUB-GRAPH G3

Fig. 2-1

The digraph G given above has 10 nodes (1). The edges of this
digraph are shown in the illustration as a, b ....... k, 1. Graph G
and subgraphs G and GI are al1 disconnected graphs. Note that
there is no pati betwe'En nodes 7 and 8 in G and G G2 is
connected. Nodes 1, 2, 4, 6 and 10 are decision Aodes. In order to
reduce the Graph G, nodes 3, 5, 7, 8 and 9 should be removed and the
following edges should be merged:

b and c and d
e and f
g and i and k
h and j.
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The following graph T is a tree. A tree does not contain any
cycles.

3 d

Fig. 2-2

PROGRAM GRAPHS

A program is an ordered set of all its executable statements.
A program may be represented by a graph in the following way: the
nodes represent statements within a program which the
execution-point could pass through and the edges represent the
actions which the program takes in getting from one no4e to anrter.
The beginning of the program corresponds to the entrv wote in t!
digraph, and the exit statement, after the invocation. of the program
is complete, is the exit node. The entry node has no incoming edges
and the exit node has no outgoing edges. Any node which has more
than one outgoing edge is a decision node and corresponds to a
decision statement in the program. The sequential execution of
statements in a program creates nodes which have only one incoming
edge and one outgoing edge. Such a node and the two edges involved
can be merged into one edge which represents the combined action of
both the statements in the reduced graph. In its reduced form, the
digraph effectively represents the decision of the program, with
each possible decision outcome assigned to an outgoing edge of a
node. The program is thus reduced from its original source-text
form to a set of DD paths. The segments of this program are simply
blocks of statements which must always be executed together as the
result of some decision taken by the program at a decision node.
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The digraph representation of a program is useful in analyzing
the macroscopic structure of programs, especially in developing test

cases and associated test data. In particular, this type of

analysis would be useful in constructing new test data to exercise a
previously unexercised segment in a complex program.

Example of a Program Graph

Consider the following program(5 2 ):

1 SUBROUTINE BUBBLE (AN)

2 BEGIN
3 FOR I - 2 STEPS 1 UNTIL N DO
4 BEGIN
5 IF A(I) GE A(I-1) THEN GOTO NEXT
6 J-I
7 LOOP: IF J LE I THEN GOTO NEXT
8 IF A(J) GE A(J-l) THEN GOTO NEXT
9 TEMP - A(J-1)
10 A(J) - A(J-l)
11 A(J-1) - TEMP
12 J -J-1
13 GOTO LOOP

14 NEXT: NULL
15 END
16 END

Label the edges in the flow of the program as follows:

Label Edge Label Edge

a (1,2) m (8,14)
b (2,3) n (8,9)

c (3,4) p (9,10)

d (3,16) q (10,11)
e (4,5) r (11,12)

f (5,14) s (12,13)

g (5,6) t (13,7)
h (6,7) u (14,15)

j (7,14) w (15,3)

k (7,8)

Fig. 2-3
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The digraph of this program is given below:

I a

2
b

d 
3 c

4

5

h 
6

7
k

n 8

9 P

10

11 r

12
S

t
13

14

W 

15

Fig. 2-4
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The digraph can now be reduced as follows:

Fig. 2-5

Nodes 1, 3, 5, 7, 8, and 16 are decision nodes for this

program. The edges represent logical sequences of statments which
must be executed together. The digraph captures the inherent
logical structure of the program. The DD paths are obvious, those
of length one are given below.

(1/3) a b

(3/16) d

(3/5) c e
(5/7) g h
(5/3) f u w
(7/8) k
(7/3) j u w
(8/7) n p q r s t
(8/3) m u w

Lojg Flow Digraph of a Program

The logic flow digraph of a program can easily be derived from
the program by examining the decisional statements within the
program. In FORTRAN for example, these are IF, GO TO (...), and DO
statements, and some others that involve statement labels and
conditional transfers. In COBOL, the decisional statements are IF
PERFORM and several other statement types.
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The graph G of Fig. 2-1 is the logic flow digraph of the
following ALGOL procedure (55):

PROCEDURE TEST CONDITIONS:
COMMENT TEST ALL CONDITIONS FOR MEMtiBER IDENTIFIED BY CURRENT NODE;
COMMENT IF ALL CONDITIONS HOLD ADD MEMBER, TO LINKED LIST;

BEGIN
INTEGER A, I;

FAIR: -TRUE;
I:-I;
WHILE ((REQUEST (I) -"Q") AND (FAIR - TRUE)) DO

BEGIN
FAIR:-M&TCHINEC = ;
I:I+l ;
END;

IF FAIR - TRUE THEN
BEGIN

A: ALLOCATEl;
IF LIST POINTER - NIL THEN LIST POINTER:-A
ELSE SETCDRl(LASTA);
LAST: -A
SETCDRI(LAST,NIL);
SETCARI (LAS,CDR2(CURRENT NODE+1));
END;

END TEST CONDITIONS;

The circled nodes 1, 2, 4, 6, and 10 are decision nodes and the
corresponding digraph can now easily be generated. The three
constructs If Then Else, While Do, and If Then are represented by
the three subgraphs GI , G2 and G3 of Fig. 2-1.

DATA FLOW DIGRAPH OF A PROGRAM

Another graph form that is useful is the data flow graph, which
models the dependence between variables in the program on each other
and on external variables that are used as the input and output for
the program. In a data flow graph each node corresponds to a
variable, and the edges indicate the dependence between variables.
When the program computes the variable A from the content of the
variable B, for example, there is an edge from the node B to the
node A. Similarly, when the result of generating B is used in the
final output of the program C, there would be an edge going from B
to C.

The data flow graph makes it possible to determine some
important properties such as the interdependence between segments.
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Similarly, the data flow graph can be used to "prove" the allegation
that all variables are set before they are used in the global, or
multiple module, sense.

PROGRAM GRAPHS AND STRUCTURED PROGRAMMING

When a program iterates, the digraph of the control structure
vill have cycles. A single entry single exit cycle is the kind that
arises in a purely structured program through the use of the
WHILE...END WHILE construct. Following are examples of digraphs of
a structured and an unstructured program. Cycle (3,2,3) of the
unstructured program is a (2,3) cycle.

STRUCTURED PROGRAM GRAPH UNSTRUCTURED PROGRAM GRAPH

a a

ad
2 b 2

b Cd 3
C

3 5

4
de g

I9

4 65
n k

8 7

Fig. 2-6
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Multiple entry and exit cycle structures complicate the path
analysis of a program. Fortunately any unstructured program can be
automatically structured by the following two-step technique (40).

(1) Each (m,n) cycle is cpied over m times to result in a set
of m different (l,n) cycles.

(2) Each (1,n)-cycle is then broken down into a (l,l)-cycle and
a (1,n-l)-cycle, when n is greater than 1. Each (1,1)-cycle
corresponds to an iteration, and the remaining cycles are
decomposed in turn until nothing other than (l,l)-cycles
remain.

All programs can therefore be represented in purely structured
form, using only succession, alteration and iteration primitives
(IF...ELSE...END IF, WHILE...END WHILE). This representation of a
program may, of course, require additional variables and edges to be
defined. In this document, we will assume that the program to be
tested has been represented in a purely structured form.

THE TREE REPRESENTATION OF A PROGRAM

The logical structure of a perfectly structured program can be
uniquely represented by a tree. Such a program is constructed with
three programming primitives: succession, selection, and iteration.
These are denoted by ., +, and *, respectively. The nodes of the
tree correspond to the three primitives ., +, and * and a directed
edge emanating from a node V denotes the sequence of non-decisional
statements which must be executed as a consequence of the decision
made at V. The following conventions are made here:

During an execution of the program, succession (.) gives
control of the program to the leftmost successor node which has

not been traversed so far. Hence every succession (.) node is
traversed exactly twice because when a leaf is reached after
the first traversal then the program backs up to the last
succession (.) node.

The left edge emanating from a selection (+) node corresponds
to the true outcome and the right edge corresponds to the false
outcome.

The left edge emanating from an iteration (*) node corresponds
to repeated action or loops, and the right hand descendant
corresponds to an exit condition.
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Consider the following progrm( 4 0). The number in the parentheses
indicates the number of statements in the nondecisional sequences
AB,C,D,E, and F.

IF PI
A(4)

ELSE
IF P2

B(4)
ELSE

C(2)
END IF
WHILE P3

D(2)
ENDWHILE
IF P4

E(6)
ELSE

F(l)
END IF

END IF

The logical structure of this program is given by the following
tree:

(4)

A

W (2)

(4 
0

(2) (6) (1
D E F

Fig. 2-7

The exit nodes of the leaves of this tree correspond to END or
END IF statements. Note that the non-decisional statement sequences
always show up as leaves in the tree.

This representation of a program is unique in the sense that
any two programs that have the same internal organization of control
statements will have precisely the same tree.
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THE MATRIX REPRESENTATION OF A PROGRAM

Adiacency Matrix

The adjacency matrix A of a program is a matrix representation of
the reduced graph G of the program. The adjacency matrix of graph G
which has N nodes is the N x N matrix defined as follows:

A(ij) - I if there is a directed edge from i to j
0 otherwise,

15.i, j1N.

The Adjacency matrix and its powers provide program path
information which can be used to identify the paths whose correct
execution should be verified. This is illustrated in the examples
given on the next page.

Reachability Matrix

If a program has E executable statements then the reachability
matrix R of the program is defined to be the E x E matrix whose
(i,j)th element is

R(i,j) - 1 if the digraph of the program admits a directed path
between node i and node j.

0 otherwise,

The reachability matrix can be used to ascertain whether any
program code is not used. This is indicated by one or more zero
columns in R (except for the column that corresponds to the entry
statement). For a large program with several modules, the

generation of the reachability matrix and detection of unreachable
code can be done by automated tools. Some of these tools--RXVP,
SQLAB, JAVS are described in Section 4 of this document.

The reachability matrix can be used to identify and test the
ways in which a given node can be reached. The reachability matrix
of the graph G of Fig. 2-1 is given in the next example.

Reachability may alternately be defined for each node j which
represents an executable statement in the unreduced digraph of a
program as the number of distinct nodes from which node j can be
reached.
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If r(j) denotes the reachability for node j then

r(j) E R (i,J).

all nodes i~j

Average reachability for j is defined as

r(j)/E.

The reachability for a node j is somehow related to its
complexity. A high reachability for a node therefore indicates the

relative importance of this node and the edges emanating from it for
the correct execution of the program. Hence, such a node should be
accorded corresponding emphasis during testing.

Examples

The Adjacency Matrix of the program G of Fig. 2-1 is given below.

1 2 3 4 5 6 7 8 9 10

1 0 1 0 0 0 0 0 0 0 0
2 0 0 1 1 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 0
4 0 0 0 0 1 0 0 0 0 1

A 5 0 0 0 0 0 1 0 0 0 0
6 0 0 0 0 0 0 1 1 0 0
7 0 0 0 0 0 0 0 0 1 0
8 0 0 0 0 0 0 0 0 1 0
9 0 0 0 0 0 0 0 0 0 1

10 0 0 0 0 0 0 0 0 0 0

The Reachability Matrix R of G is given below.

1 2 3 4 5 6 7 8 9 10

1 0 1 1 1 1 1 1 1 1 1
2 0 1 1 1 1 1 1 1 1 1
3 0 1 1 1 1 1 1 1 1 1
4 0 0 0 0 1 1 1 1 1 1

R 5 0 0 0 0 0 1 1 1 1 1
6 0 0 0 0 0 0 1 1 1 1
7 0 0 0 0 0 0 0 0 1 1
8 0 0 0 0 0 0 0 0 1 1
9 0 0 0 0 0 0 0 0 0 1

10 0 0 0 0 0 0 0 0 0 0
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LOGIC FLOW ANALYSIS

The purpose of the digraph representation of a program is to
make visible and reachable the internal structure of the program in
order to derive a set of tests which are effective in verifying that
the intended software functions of the program are present. Even if
at all possible, it is not practical to test all DD paths through
even relatively simple programs. The flow of a small program is
represented in the following reduced digraph. The program consists
of a DO loop which is executed anywhere from 0 to 10 times, followed
by a two-way IF, followed by another DO loop which can be executed
anywhere from 0 to 10 t4,es. Each loop contains a set of nested IF
statements.

Loop .< 10 times Loop < 10 times

Fig. 2-8

Under the worst case assumption that each decision node is
traversed independent of others, there are approximately 1018

distinct DD paths through this program. The estimated age of the
universe, in comparison, is only 4 x 1017 seconds. Of course, in
practice all these paths are not independent and as such some of
these may not be considered for testing. But even the number of
feasible paths through a program is usually very large. Executing
all feasible paths through the TITAN missile navigation and guidance
software would take an estimated 60,000 hours of CPU time.
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For effective program testing, therefore, a set of test cases
must be caretully chosen which will provide the optimal amount of
confidence in the correctness of the program given a certain amount
of resources. The rest of this section will deal with the
development of such a methodology for testing.

A COVER FOR THE LOGIC FLOW PATHS OF A PROGRAM

An immediate simplification of optimally choosing test cases
for a program is obtained by the boundary-interior method for path
testing( 2 8 ). In this method, two paths are defined to be
equivalent if the only difference between them is the subpath they
follow through one or more loops during some traversal of the loop
other than the first traversal.

A program is thus decomposed into a finite set of equivalence
classes of paths in such a way that an intuitively complete set of
test cases would cause the execution of one path in each class. A
set of complete paths through the program which contains at least
one element from each equivalence class is called a cover for the
program.

In the path analysis approach to testing, the programmer
utilizes the knowledge of the internal structure of the program as
represented by its DD paths in order to construct an ever increasing
sequence of test cases. A test consists of an execution of the
program along a chosen path. The output of the test is compared
with that which was supposed to be generated for the given test
data. This approach to testing makes it possible to develop
increasing levels of confidence in the correctness of a program. At
any time during the test program, test effectiveness measures can be
developed, as will be shown later in this document. If the amount
of confidence is not satisfactory, then in order that different
parts of a program's capability can be tested, path analysis
techniques can identify those segments which have not been tested so
far. The average reachability of the decision nodes from which a
segment emanates can help identify the most significant segments for
which tests must be generated. Whereas an ultimate software testing
system would include automatic test data generation for a given
segment and an automatic analysis of the outputs, at present there
is only limited capability to do so, although these are subjects of
much current research (7,9,12,23 and 25).

Typically, a cover is made up of paths through the program
which traverse the loops in the program exactly 0 or 1 times.

Thus, the following three paths form a cover for the program cf
Fig. 2-9;

(1,2,4), (1,2,3,2,4), (1,2,3,3,2,4).
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2

3

4

Fig 2-9

The goal of path testing is to ensure that a sufficient number
of statements, DD paths and subroutine calls are exercised during
program execution, with the least amount of redundancy, in orde)ir to
achieve a certain level of confidence in the correctness of the
program. Test effectiveness measures, which will be developed in
this section, will be the tools to assess sufficient coverage of
statements, branches and DD paths for a given t t program. It is
well accepted that an effective test program should at the minimum
contain test data to execute each statment and each branch at least
once. In fact, the Air Force is considering the adoption of this
minimum testing standard for all its programs (31, p. 404).

In Section 3 path testing will be presented as a natural
extension of currently practiced software engineering practices.
Along with structured programming and top down modular
implementation, path analysis will be shown to form an integral part
of software engineering. It will also be shown that path testing
can be utilized in the continuum model of software development which
models the evolutionary development of structured computer programs
in a top down fashion.

Test Effectiveness Measures

Having chosen a path analysis approach to software testing, one
is faced with the problem of how thoroughly should the program be
tested. Testing with real data until resources run out, as it is
usually done, does not provide the test leader with an estimate of
the effectiveness of the test program. Although there are not many
formal test results which provide guidelines concerning the optimal
amounts of path
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testing given for a program, it is generally agreed that every
statement and every branch of the program should be exercised at least
once. However, in Howden's experiment(62) branch testing by itself

exposed only 21% of the errors, and lead him to conclude that
"detection of a significant number of errors that will be discovered
by path testing depends on the combinations of program branches rather
than single branches."

In this section we will develop a hierarchy of test effectiveness
metrics which will quantify with increasing confidence, the level of

test effectiveness achieved. Also the scheme will help identify
physical areas in the program which have not been covered so far in
the test process. Define the following test effectiveness metrics:

number of distinct statements exercised at least once
TEN(O) = total number of executable statements

number of distinct DD paths of length no more than k
exercised at least once

TEM(k) =
total number of DD path of length no more than k

for k = 1, 2. ......

A DD path of length k is a program path through k+1 decision

nodes in the program. It is assumed here that paths are considered
equivaleat if they are different only in the subpaths they follow
through the loops during traversal of the loop other than the first
traversal. In this case a path which traverses the loop a minimum
number of times (at most once) may be chosen as a representative
path.

If there are no cycles in the program graph then the hierarchy
of test effectiveness measures will be terminated at k = m where m
is the length of the longest path through the program.

The program will then be completely tested if

TEM (m) = 1.

Note that if there are no unreachable statements then

TEM (m) = -iTEM (m-I) = 1 .... TE(k) 1= I ... TEM(1) - 1.
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Different TE~s measure structural test effectiveness at
different levels. TEM(O) i 1 corresponds to executing all
statements at least once. TEM(l)-I corresponds to testing all
segments at least once. Note that a non-executable statement may
not belong to any segment. TEM(2) - 1 corresponds to the well known
branch testing technique, i.e., the construction of test cases to
exercise all branches in a program at least once. A test
requirement of TEM(2)1I is the first intermediate level of test
effectiveness in the sense that it forces the tester to choose paths
through the program which capture some of the structure of the
program. Attempting to achieve unity at progressively higher levels
in the hierarchy provides a more formal and systematic approach to
software testing than relying on the programmer's intuition or the
"black box" approach of execution time-testing. When TEM(k) is
maximized for some k, then DD paths of length k+l are examined.
Some of these might already have been tested by data which were used
to exercise length k paths. Those that have not yet been executed
may be identified and an attempt made to generate data for their
execution. This would yield sets of test paths as independent of
each other as possible so that different parts of a program's
capability can be addressed.

The above systematic approach to software testing, although
practical, is not always easy to use and therefore must be augmented
by other testing techniques.

1. Infeasible Paths: Any automatic path generation technique
for deciding on which paths to test leads to the problem of
paths which can never be executed. A certain program
action taken at one point in a program may result in a set
of conditions that makes some other program action
impossible. Woodward et. al (62) point out that although
the number of paths through a program component rises
dramatically as paths of ever increasing lengths are
considered, very large proportions of them are infeasible
(62). The problem must be handled by augmenting the
current automatic tools with a certain amount of manual
analysis.

2. Infinite Loops: The above testing scheme provides less
than adequate testing for infinite loops in the program.
In practice, however, it is easy enough to determine a
large enough k for a given program such that the existence
of a feasible DD path of length k would indicate an
infinite loop in the program.
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Example

Consider the following program:

1 SUBROUTINE EXAMPLE(N RESULT)
2 NSUMSQ -0
3 DO 10 1-1,14
4 NSUNSQ - NSUMSQ + I*I
5 10 CONTINUE
6 RESULT - SQRT(FLOAT(IISUMSQ))
7 RETURN
8 END

The reduced digraph of this progra is given below

Fig. 2-10

The DD paths of level k < 3 are:
(1,3) (3,5) (5,3) (5.7)
(1,3,5) (3,5,3) (5,3,5) (3,5,7)
(1,3,5,7) (1,3,5,3) (3,5,3,5) (5,3,5,7) (3,5,3,7)

Testing the following two paths through the program will
satisfy the condition TEM(3)i,

(1 ,3,5,7,exit)
(1,3,5,3,5,7,exit).

These paths correspond to inputs N-i and N4-2 for the program.

However these two paths do not test for infinite loops through
the program.

How .jo Measure Effectiveness- of a1 iven St of Iet~~

Suppose one wishes to evaluate the effectiveness of a given set
of teat data D f or a program. This may come from real life
experiments that were conducted for a previous program, or some data
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or pseudodata generated during the developmental stages of the

program. The effectiveness of this data may be determined by
developing metrics for this data. Define

number of distinct statements executed by the data
set D

DEM(O) .

total number of executable statements

number of distinct DD paths of length less than or
equal to k executed by this data

DEM(k) -

total number of distinct DD paths of exact length k

k > 1.

For k-0,2, this would immediately indicate how many statements
and branches had not been executed by this data. Higher values of k
correspond to combinations of branches that are executed by this
data. Values of DEM(k) close to one give high degree of confidence
in the set of experimental data. The effectiveness of any set of
test data can be measured at different levels k by the values of
DEM(k).

Measuring DEM(k) for a program can easily be automated to some

extent. What is needed is a mechanism for recording whether or not
a program's flow-of-control passes through an action which results
from a particular value of a predicate outcome. So, the program
need just be instrumented, using the given data, in such a way that
each of the decisions of the program is recorded in some manner.
Then the recorded data, called a decisional trace, can be analyzed

to determine the values of DEM(k) for a given value of k, which are
achieved by this test. The aggregate results of these computations

for the entire data set measure the effectiveness of the testing

activity with this data set. This measure may be applied to a
module of a program, or to the entire program.

An outstanding feature of using path testing as opposed to any
other sottware metrics in measuring the effectiveness of a data set

in the field is that the Data Effectiveness Measures increase in
value only when a new test performs something functionally different

from what has been tested before. Merely executing the same paths

through a program which donot add information about the correctness

of the program, do not increase the value of DEM(K).
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A Theoretical Upper Bound Lr the Amount of Testing

How much testing is enough for testing a computer program
thoroughly? An upper bound can be determined on the number of paths
that must be chosen properly and executed in order to cover every
branch in the program. This upper bound, called the cyclomatic
number or the Paige-Holthouse measure, is related to the complexity
of the program(7, 2 5 ). In practice, this number of appropriately
chosen paths through a program will not establish the correctness or
incorrectness of the program. The practical use of computing the
cyclomatic number lies in the guidance it provides in comparing the
relative complexity of different modules of a program in order tooptimally allocate the available resources for testing.

For a reduced program graph G with E edges and V nodes, an
upper bound for the number of tests for total edge coverage is

T(G) = E-V+2.

This is easy to see because if a test reaches any decision node
(except the exit node) then it must exit somewhere. So at least one
of the edges coming out of the decision node will be automatically
covered. There are (V-2) decision points in G. Hence E-(V-2) paths
can be chosen which will cover every edge in G.

The Air Force is considering adopting k-2 level of testing,
i.e., branch testing as a minimum standard for testing software
programs(39, p. 404). The cyclomatic number can then be used to
determine how far the test program has met the goals at a particular
point.

TEST DATA GENERATION

The test data generation problem is to find an algorithm which,
given any class of paths, will either generate test data that causes
some path in that class to be executed or determines that no such
data exists. This problem is theoretically unsolvable (27). Even
the problem of construction of certain constrained paths through a
program has been shown to be NP-complete (19 ). This, however, does
not mean that non-algorithmic or heuristic techniques cannot be
used.

There are two parts to the test data generation problem.
First, given a DD-path to find another one which can potentially
lead from an invocation of the program through this DD-path; and
seconoly having determined the program path from entry to exit, to
determine input data which will cause the program to execute along
this path. Having identified a particular program path to be
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executed, there will be a set of predicates that have particular
values along that path. By backtracking along this path, the
general problem of test data generation can be reduced to one of
solving a set of simultaneous inequalities involving program

variables that define the set of conditions necessary for a
particular program flow to actually occur. Typically, these
inequalities are non-linear, which makes the problem very difficult.
There are three basic approaches to the solution which have attained
partial success:

Symbolic Evaluation

This method involves either forward or backward symbolic
interpretation of actual program statements that lie along a chosen
path. Research in this area centers on selecting the particular
statements to be included in the analysis and the ways to process
the resulting formulas. IBM (33) and Stanford Research Institute
(4) are actively seeking to exploit the similarities between
symbolic evaluation and path analyses methods for automatic
generation of program data. This method at present is only for
theoretical interest. The practical applications will probably come
in another decade. In 1978 Bowden (2b) attempted to use symbolic
evaluation on six different programs and concluded the method was of
little practical use at present.

Linearization

In this method of test data generation the inequalities
describing the conditions of execution for a program path are
derived. In all but the most trivial cases, simultaneous nonlinear
inequalities must be solved. One partially successful technique for
solution involves linearizing the inequalities and solving the
linear system in order to approximate a solution of the nonlinear
system. If the solution to the linear system does not solve the
non-linear system then the linearization process is continued

another time for a more appropriate solution. The method has been
automated (4), but it does not guarantee an exact solution in a
given time.

Test Case Derivation

Test data sets can be derived by altering an existing set of
test data so that the altered data set forces the program to execute
a previously unexecuted segment. The method, described in(51) is
based on a series of heuristically guided searches or variations of

a known data set which execute the program "near" an unexercised

segment.
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Semi-automated assistance is provided by program analysis tools
for the test data generation problem. These tools help in
identifying structurally feasible program paths which contain a

given DD path and in performing some of the computations needed in
the analysis of that path. More sophisticated assistance which is
based on an analysis of the collection of paths which are "close" to

the desired path is provided by tools like the NASA ATDG system.
Although this and several other tools can be used as an aid to
generate test data, as Ed Miller puts it, "there have been several
interesting proposals, but very little automatically generated
data."

EXPERIENCE WITH PATH TESTING

The effectiveness of a testing program should be measured by

how many errors it can catch. At the current state of development,
the path testing methodology needs to be augmented by other types of
testing techniques, although it is of invaluable help in determining
which areas of the program in which to concentrate for better
coverage.

It is possible to execute all control flow paths through a
program without detecting missing control flow path errors. This

type of errors arise from failure to test for a particular
condition, resulting in inappropriate action. For example, failure
to test for a zero divisor before executing a division may be a
missing control flow path error. Of course, a detailed data flow
path analysis would detect this particular error.

Practical experiences with path testing are reported below.

D. S. Alberts (1) reports that the use of test coverage

measures caught between 67 and 100 percent of the errors and at 2-5
months earlier than they would otherwise have been detected. The
particular automated tools used applied branch testing. J. R. Brown

reports (7) that using branch testing eliminated nearly 90Z of the
program s errors. It wasn't clear, however, whether this resulted
simply from requiring the programmers to examine their code very

carerully. W. E. Howden in 1978 re:orted on an experiment using six
sample programs. Branch testing by itself reliably exposed only six
out of 28 errors (about 211). The path testing strategy itself was
reliable for exposing 18 out of 28 errors (64%) and was the best

single testing strategy at exposing errors. This indicates that
detection of a significant number of errors depends on the
combinations of DD paths rather than single branches.
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DATA FLOW ANALYSIS

From the point of view of control theory, the action of a
software program can be captured by rigorously defining all its

intermediate states. In this sense, the program is a collection of
operators operating on a set of variables in a certain way. A given
variable at a particular point during the execution of a program may
be in one of three possible states:

U - Undefined
D - Defined
R - Referenced

A variable may be in the Undefined stage when due to language
syntax and semantics the variable loses meaning or purpose. This
may happen, for example, to the index of a DO loop outside the

subroutine or block. A variable is defined when it is assigned a
value. A variable is said to be referenced when it is fetched from
storage. During the execution of a program., a variable is said to
be in the hazard state H if it passes through any one of the
following three sequences:

U-R
D-U
D- D.

The hazard state does not necessarily imply an error. It is a
flag for checking for a possible error.

A variable X or a constant which restricts or limits another
variable Y is called a modifier. The notation (X, Y) will be used
to indicate that X modifies Y. In the following statement,

A(l,N) - B(M+L)*3 + R(S(K))

the following modification relationships hold

QlA) (M.B) (K,S)
(NA) (L,B) (S,R)
(B,A)
(3,A)
(R,A)
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This can be illustrated via a modification graph, as follows:

K

S M L

Fig. 2-11
Methodology

In data flow analysis attention is directed at the sequential
pattern of definitions, references and undefinitions of values for
variables. The actual values assigned or referenced are ignored,
only the fact that definition, reference or undefinition was made is
used. Two rules concerning the sequence of these events along each
path from the start of a progrm to a stop are expected to be obeyed
for each variable:

1. A reference must be preceded by a definition, without an
intervening undefinition.

2. A definition must be followed by a reference, before
another definition or undefinition.

Violation of the first rule called a type 1 anamoly should
cause an erroneous result during program execution; moreover, in the
case of FORTRAN it is a violation of the ANSI Standard. Violation
of the second rule should result in a waste of time, but not an
erroneous result.

Many things can cause a violation of either or both rules.
Forgetting to initialize a variable is the most obvious cause of a
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violation of the first rule. However, spelling errors, confusion of
names, misplaced statements and faulty subprogram references also
cause violations of this rule. The second rule may be violated when
a programmer forgets that a variable is already defined or that it
will not be used later. Many optimizing compilers remove this
'dead' variable assignment, assuming these to be the only causes.
However, many common errors also cause violations of the second
rule.

Data flow analysis of a program is of two types: dynamic and
static.

Dynamic Analysis

In dynamic data flow analysis probes are inserted in a program
to determine the points in a program at which a variable passes from
one state (U,DR) to another or is modified. The program is then
executed and a record is made of each variable as it passes from one
state to another. The hazard sequences are flagged and a
modification matrix is constructed. An example of a modification
matrix for an execution of a program is given below:

Modification Matrix
Variables

-' -. - - -J
-t t; n LL)~- U

0 X

CONSTANTS 1 X X X X X X

2

A X X
r XX X X

J X X

N X

11 X X

PAT1AMETEnlS Jil X X

TOP X X X

STKI X
STK2 X

TEMP X

FLAG

Fig. 2-12
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The columns represent variables and the rows contain constants
and parameters which modify these variables. If a constant shows up
at the top of this matrix as a variable which is modified, the
program is in error. The modification matrix can be automatically
scanned for any such errors.

The value of dynamic flow analysis in testing has only recently
been realized. It is grossly under-utilized during testing.
Although there is much current research in this area (23,29,30,
44,58), for a practical global theory as it applies to issues of
program testing and corresponding algorithms and tools has not been
met yet.

Static Analysis

Static data flow analysis, on the other hand, is widely used
during program testing for allegation checking. A static analysis

avoids executing the program. It classifies all local and global
variables and performs an exhaustive search for data flow anomalies.
This type of analysis is usually done with the help of automatic
tools.

DAVE, validation error detection and documentation system for

FORTRAN programs, is a static analyzer developed by Leon J.
Osterweil and Lloyd D. Fosdick. They discuss (50) how data flow
graph information is used by static analysis to prove relatively

strong allegations about FORTRAN1 programs. This research tool,
typical of the fourth-generation automated tools, as Ed Miller calls
them, is a system capable of detecting the symptoms of a wide

variety of errors in a program. In addition, DAVE exposes and
documents subtle data relations and flow within programs.

The messages issued by DAVE are divided into three categories:

error, warning and general information. An error message is issued
whenever DAVE is certain that a type 1 anomaly is present on an
execution path. A warning message is issued whenever a type 1
anomaly might be present on an execution path. A warning message is
issued if a type 2 anomaly is detected.

DAVE begins by dividing the program into program units. These
are then divided into statements and statement type determination is
made. Next, the subject program is passed to a lexical analysis
routine which creates a token list to represent each of the
program's source statements.
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Fig. 2-13

As the token lists are created, comprehensive data bases foreach of the program units are also created. Each of these data
bases contains a symbol table, label table, statement table and atable of subprogramvide data. The symbol and label tables contain

the same kind of information found in most compiler symbol and labeltables, listing symbol and label attributes as veil as the locations
of all references to the symbols and labels.

During this lexical scan phase DAVE determines the input/outputclassifications of all variables used in each stateent, except

variables used as actual arguments in subprogran invocations, andloads this information into the stateent table. The table of
subprogra wide data for a program unit contains an external
reference list containing all subprograms referenced by the progrna
unit, as well as representations of all non-local variable lists;
i.e., the progra units dummy argument list and COMMON block lists.
These lists are used to establish the input/output classification
within the invoking program unit of all variables used as actual
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arguments in invocations of this program unit. The external
rererence lists are used to construct the program call graph, a
structure that indicates which subprograms invoke which other
subprograms.

After all the program units of the subject program have been
processed in this way, DAVE enters the main phase of documentation,
analysis, validation and error detection. The program call graph is
examined, and a leaf subprogram is selected for processing. Because
this subprogram is a leaf, the input/output search procedures
described above are immediately usable.

The local variables of the subprogram are analyzed first. An
error message is generated for all local variables which are found

to be strict input for the subprogram. The input/output
classifications of the non-local variables of the subprogram are
then determined. These classifications are printed, and also stored
in the subprogram-wide table of the subprogram under study. Warning
messages are also printed for all dummy arguments which are found to
be non-input and non-output.

The system makes a special check of the usage of all DO-loop
index variables following satisfaction of their DO's. If the first
use of a DO index following DO satisfaction is input or strict
input, an anomaly is indicated and a warning or error message is
produced. These situations are detected by initiating an input
category determination trace for the DO index where the trace is
begun with the flow graph edge which represents the DO satisfaction
branch.

The analysis of a non-leaf program unit is more complicated.
Such a program unit will, of course, not be analyzed until all
subprograms which it calls have been analyzed. Then DAVE can fill
in all entries which had been left blank during the creation of the
calling unit's statement table. Certain FORTRAN errors are detected
as this proceeds. For example, mismatches between either the types
or number of actual arguments in an invocation and the members of
the corresponding dummy argument list are detected here. The use of
an expression or function name as an argument to a subprogram whose
corresponding dummy argument is either an output or strict output
variable is also detected here.

DAVE also exposes concealed data flows through subprogram
invocations. Concealed data flows result from the use of COM1#%
variables as inputs (or outputs) to (from) an invoked subprograw
Such situations are easily exposed by examination of the COMMON
block variable lists in the subprogram table of the invoked
subprogram.
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If a COMMON block, B, is declared by a high level program unit
which invokes a subprogram, S, in which the block is not declared,
then the ANSI Standard specifies that B must still be regarded as
implicitly defined in S provided that some subprogram directly or
indirectly invoked by S does declare B. Hence data referenced by
the variables in B may flow freely through routines which do not
even make reference to B. Such data flows are noted and monitored
by DAVE. In addition, DAVE is capable of printing the names and
descriptions of all COMMON blocks whose declarations are implicit in
a given subprogram. The algorithm for determining which blocks are
implictly defined in which routines involves a preliminary leafs-up
pass through the program call graph and then a final root-to-leafs
pass.

After all of the above described checking and insertion of
input/output data into the statenent table has been done, DAVE
proceeds with the analysis of the variables, explicit and implicit,
local and non-local, as described in the case of a leaf subprogram.
The algorithm used here are generalizations of those described in
the previous section.

Subprograms are processed in this way until the main program is
reached. Processing of non-COMMON variables in the main program is
the same as the processing of such variables in any non-leaf, but
COMMON variables must be treated differently. Any COMMON variable
which has an input or strict input classification for the main
program must be initialized in a BLOCK DATA subprogram. If not, a
warning message (if the classification is input) or an error message
(if the classification is strict input) is issued. Similarly, if
the last usage of a COMMON variable was as an output from a main
program a warning message is issued.

CONFIDENCE LEVEL OF A TEST

Having completed a rigorous path testing program, there is
still the more basic issue of what confidence do we have in the
performance of the program. The test effectiveness measures give
the coverage achieved by the test program for a given level k of DD
paths in the program. The data flow analysis also sheds some light
on the use of variables in the program. Based on the number of
errors found in the execution of these paths, we will now determine
a confidence level for the correctness of the program.

Suppose that P is a program which is meant to compute a
function F with domain D. A testing strategy for P is a procedure
for choosing a finite subset T of D. T is said to be reliable if:
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P(x) - F(x) for all xCT -> P(x) - F(x) for all xED.

That is, T is reliable for P if T reveals that P is incorrect
whenever P contains aa error. Assume that there exists a
hypothetical correct program P*. The differences between P and P*
define the errors in P. William E. Howden has shown that path
analysis testing is a reliable method for testing such programs,
i.e., path testing reveals an error when one exists in the program
(28). A patchword is defined as any of a number of machine
instructions required to fix an error in the program P. Define

The degree of incorrectness of P

the number of patchwords required to correct the program P
the number of machine instruction words in the program

This is, of course, a hypothetical definition because the
correct program P* is hypothetical. Based on the results of the
path testing program, we can make a statistical inference about the
degree of incorrectness of P.

A given DD path of length k in a program may be contained in
several complete paths through the program. Equivalently, a set D
of input data can be chosen such thqt each element dfD executes a
different complete path through the program which contains the DD
path of length k. Note that some of these complete paths may
contain an error while others may not.

Suppose that a logic flow path testing program T consists of
testing n, paths of length 1, n2 paths of length 2,...., n paths
of length s. Suppose further t at none of these paths is c~ntained
in another. Then the path testing program T chooses a sample of n
complete paths through the program, where

n = nl + n2 + .....+ ns .

The problem of a complete path containing more than one DD
paths of T, can easily be handled by requiring that a different
complete path be chosen for each DD path contained in T. This
corresponds to sampling without replacement.

Assume, now, that errors occur independently and are randomly
distributed along different paths of the program, and that the
number of patchwords required to fix an error is a random variable.
Define, for each path i,
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the number of patchwords required to correct the
errors in P along path i.

i the number of machine instruction words in the program

j=1 ....... ,N.

Xi are then independent and identically distributed random
variables. Note that the number of machine instruction words in the
program is a constant fixed for the program.

We will proceed to test the hypothesis that p, the degree of
incorrectness of P, is less than or equal to a specified acceptable

vale po.

Let xi denote the observed value of Xi when path i is executed.
Then, x. is the total number of patchwords required to correct the

program divided by the total number of machine instruction words
in the program. Hence, the observed degree of incorrectness of P is

n
S =Ex.

i=1 '"

The confidence level attained by the test program can then be
obtained by using the Central Limit Theorem. We will reject the
hypothesis p = po at a given confidence level lO0(l-a)% if

S - P0

p( I -P) z (
N

where z is the 100(1-a)th percentile of the Gaussian distribution
with mean 0 and variance 1.

Reinterpreting the same statistical analysis, having observed a
value of the degree of incorrectness of the program P, we can have a
confidence level of 100 (1-%) in the result where the value of
(S-po)/ ro(1-2o) is 1O0(l-a)th percentile of the Gaussian

n
distribution with mean 0 and variance 1.

The above analysis may be carried out separately for the data flow

paths chosen by the test program P.

Example

Suppose that a test program executes 10,000 logic flow and data

flow paths through the program P. Suppose that po < .003 is the
acceptable degree of incorrectness, i.e., the program P is
acceptable if it can be corrected with less than or equal to .003 x
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(the number of machine instruction words in the program) patchwords.
When the test program is executed, assume that the observed degree
of incorrectness is

S = .004

Then, S - P0  .004 - .003

P -P 0 ) .003(.997)

n 10,000
= 1,83150.

This corresponds to 96.64% confidence level (24)as shown below.

.91664 .0336

0

1.83

Fig. 2-14

So if the observed degree of incorrectness of the program based on
test results is .004, we can still accept the program with about 97%
confidence.

Specifications for a Test Program

The specifications of a test program for testing a computer
program P can now be formulated in terms of

po - the acceptable degree of incorrectness of P
e = the acceptable error in estimating po

100(1- ) the desired confidence level.

The number n of paths through the program which must be tested
in order to meet this specification is given by (24)

z p ° (l-p
° ) 2

A typical specification for a test progrm would then read as:

The degree of incorrectness of P should be less than .003 with
98% confidence that the estimation error does not exceed .001.
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This specification will be met if

i) n=[2.06 x.003(.997)]2_ 12,692 paths are executed through

Lhe program,

ii) the number of patches required to fix the errors observed
by executing these paths is less than .004 x the number of machine
instruction words in the program.

If the program resources do not allow testing of so many paths,
then the confidence level should be dropped.

ESTIMATING TIME TO COMPLETION

Fred Brooks in 1975 observed (5),

"In examining conventionally scheduled projects, I have found
that a few allowed one-half of the projected schedule for testing,
but that most did indeed spend half of the entire actual schedule
for that purpose. Many of these were on schedule until and except
in system testing."

Unlike the "black-box" methods of conventional testing, the
more organized and disciplined method of path testing provides more
control and visibility to the collected information relating to the
quality of the software being tested and the resources being
expended in collecting this information. In real and large systems,
there is a point of diminishing returns on investment of program
debugging efforts. Getting at absolutely all the errors in a real
program is now recognized as a task requiring almost infinite
resources. In 1972, in the 20th major version of their
approximately 3 million dollar 360 Operating System, IBM officially
reported approximately 12,000 new bugs in the system. At least
1,000 bugs had been discovered in each of the 20 releases in spite
of 24 hour usage of the program for several years by thousands of
installations (20). By tracking the history of bugs discovered in a
program, we will now attempt to predict the time to completion for
this program using the method of estimating the number of fish in a
pond.

Estimating the Number of Fish in a Pond

In order to estimate the total number of fish in a pond, a
reasonably large sample a of fish are caught and marked. These are
then allowed to mix homogeneously with the population in the pond.
Another sample of n fish is then caught. If m of this new sample
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have markings on them, the total population in the pond can be
estimated as

2
or) on m

Estimating Number of Errors Not yet Detected

The number of yet undetected errors in a program can be
estimated by debugging the program with n artificially inserted bugs
at the initiation of a debugging program. Now at any point during
the program if only m of the artificial bugs have been detected
while N of the real bugs are detected, the number of yet undetected
errors can be estimated to be

n nN- x N or mV
m m

For example, 100 errors were inserted artificially and only 60 of
these have been found so far while 300 real errors have been found,
then the number of yet undetected errors of the same type can be
estimated to be 500. Of course, the number of actual bugs in the
program could really exceed this number if some types of bugs were
not inserted in the program. For a more detailed discussion on how
to make the artificially inserted bugs more representative, see Ref.
(34, p. 36-39).

Errors Detected Vs. Time

If artificial errors are inserted in a program, the debugging
curve plots the percentage of those detected as a function of time.
Three experimentally achieved debugging curves are shown below (34).
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Time to Completion

Us ing the debugging curve, the time to meet a certain quality
specification of the program can be estimated. Regression analysis
can be used to predict the time to achieve a certain percentage of
correctness. Also just a visual inspection of the slope of the
curve and the amount of artificially inserted errors caught so far
can yield an estimate of the time required to catch a specified
percentage of these errors.

The use of the metrics developed in this chapter can be
organized into a complete software testing methodology. This is
done in the next chapter.
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Section 3

A SOFTWARE TESTING METHODOLOGY AS AN INTEGRAL PART
OF SOFTWARE ENGINEERING

In the traditional software model, testing is a series of
discrete steps associated with different phases. A programming
project is viewed as a sequence of distinct phases: Definition,
Design, Implementation, Testing, and Operation. Each project phase
produces documentation which records the results of that phase and
also disciplines the subsequent phases. The definition phase
produces a specification and a statement of work before the design
phase is initiated. The transition from the design to the
implementation phase is demarked by Preliminary Design Review and
Critical Design Review. PDR assesses the logical and technical
feasibility of the design and CDR assesses the implementation and
perrormance feasibility. The implementation phase comprises of
coding, unit testing, and integration. Unit testing and development
of system plans and procedures occurs during the implementation
phase, while system testing itself constitutes the testing phase.
The traditional approach has been strengthened by the addition of
formal validpt.on points at the end of each phase. This explicitly
incorporates feedback loops into the development process.

The appeal of the traditional phased project model is simply
that it is the contractual model. Software acquisition contracts
and project management policy presently key their deliverables and
milestones to the traditional model. The DoD now rigorously applies
configuration management with successively approved baselines and
formal change control procedures to the development of software
systems. The model thus has a strong managerial justification. But
in its technical formulation, it does not portray the evolutionary
development of system releases. Such successive versions often
accelerate user interfacing or accommodate a design to cost
development strategy. Also the traditional model largely ignores
the global feedback between software activities. For example, unit
testing can expose coding errors, integration testing usually
uncovers interface design errors and acceptance testing can reveal
system deficiencies in function or in performance with respect to
intended requirements.

McHenry in 1977 (37) proposed an alternative to the traditional
management model by defining the concept of a continuum of
specifying software activities where the full system is obtained via
incremental construction and demonstration. This approach of
"code-a-little, test-a-little" subsumes all testing activity. Using

50



the resources of the project and support facilities, the test
procedures are themselves developed as a system, top down. This
approach allows co-habitation with the traditional contractual model
in terms of required reviews and deliverable documents.

Structured programming, top down design and implementation and
path testing in the continuum model combine to form a complete
software engineering model for software development and testing. In
this section, we will examine how path analysis interacts with the
other software engineering techniques and the effects of using these
techniques on software testing.

STRUCTURED PROGRAMMING

Analogous to the proven sufficiency of using Boolean Algebra,
of AND, OR and NOT gates for reading any logic circuit is the result
that statement sequencing, IF-THEN-ELSE conditional selection, and
DO-WHILE conditional iteration suffice as a set of control

structures for expressing any sequential program logic. Dijkstra in
1972 introduced and developed structured programming as a
"constructive" approach to "the process of program generation such

as to produce apriori correct programs" (17). The well-structured
program is more easily read, thus facilitating maintenance,
modification, and correction. Structured programming is of
invaluable help in testing the control structure of a program for
the rules of program composition are limited to those that are well
understood. The practice of structured programming, with its purely

theoretical origins, "has been a catalyst for the review and change
of software production practices." Structured programming, in less

than a decade since its introduction has become a programming

standard for all leading software developments.

TOP-DOWN IMPLEMENTATION

Top-down implementation is a hierarchical development of
executable versions that model the final system. To obtain an
executable system, program stubs are used. A program stub is some
short code that permits any referencing code to continue execution.
Thus a stub must meet any interface requirements. Stubs are later
fully coded and, in turn, may reference other stubs. The simplest
kinds of stubs are those represented by non-functional dummy code
for debugging and testing purposes. Function stubs provide data to
higher level segments through fixed parameters, simulation or some
simplified skeletal procedures.
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This approach was first advocated by Zurcher and Randell (6 4 ).
H. Mills (38) refined it in the mid-seventies and was the principal
influence in making it a production practice. Most extensively
reported uses of this approach were on the New York Times Project,

ASTP (Apollo-Soyuz Test Project), NASCOR (FAA National Air Space
System Support Software) and the Skylab Ground Support Simulation
(36).

TOP-DOWN IMPLEMENTATION IN THE CONTINUUM MODEL

In the continuum model, the top-down implementation becomes
"code-a-little, test-a-little". Top-down implementation here

requires interim executable versions of the program to be produced.
Hence, some parts of the program are completely implemented while
others remain as stubs. Implementing and integrating an interim

executable version requires referencing some yet uncoded stubs.
These stubs are later fully coded in the next executable version of
the program and in turn may reference other stubs. Integration,

therefore, becomes a continuous activity throughout development.
Many errors that initiate rework are found during integration
testing. By distributing integration activity over the entire
development effort, the model serves as an executable check on the
adequacy of the design of the system. Projects that defer

integration testing are vulnerable to greater cost and schedule
over-runs since the cost of error rework is 10 to 100 times higher
and is accomplished in large part during the end of the schedule
(43).

Yourdon and Constantine attribute the proven advantages of

top-down implementation in the continuum model solely to its

incremental testing aspect. William F. Ross in 1974 remarked,

"Code-a-little, test-a-little" seems to produce the majority of

the increase in programmer productivity. This opinion is based on

experience with three recent large scale real-time system

development efforts at Hughes (54).

A COMPREHENSIVE SOFTWARE TEST METHODOLOGY

A comprehensive test methodology for a program which is

pertectly structured with top-down design and implementation, can

now be developed. This methodology can be applied to programs at
any time during their evolution in the continuum model. In

particular, it can be applied to interim executable versions of the

program. One of Dijkstra's original arguments for top down design
was that it resulted in modules that are simple enough to make it

possible to test all logical paths (up to loop iterations) through

each module (
1 6 ).
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The sequence of paths which can be traversed during an

execution of the program are, of course, specifically defined by the
control structure of the program from which they arose. A
collection of digraph reduction algorithms (65) using the DD paths

of the program define the level i paths for the program as follows:

A level 0 path leads from the entrance of the program to the
output without employing any DD path more than once. In
effect, the level 0 paths correspond to the "fall through"
conditions extant in the program spine.

A level i path, : > 0, leads from an alternative predicate
outcome along xame level (i-l) path, through a set of DD paths
not present on any lower level path at a point earlier than the

original (i.e., departing) DD path. A level i path, i > 0,
represents iteration "over" a level (i-1) path.

Typical computer programs contain only a few levels of

iteration; the algorithms identify all of these automatically, and,

in addition, identify the unique predecessors for each level i path.

The collection of such level i paths forms a "tree" because of the

precise ancestry relationships present. This tree is used as the

basis for efficient organization of the search for meaningful test

cases for a program.

Once the level i paths have been identified, the tree

indicating their structure can be drawn. The tree is rooted in the

program graph, and consists of a number of branches. The most

interesting branches are the ones which have no successors, i.e.,

the terminal-branch level i paths. The following result has been

established by M. Paige:

If a set of test cases traverses the DD paths which exist on

the set of terminal-branch level i paths for a program at least

once, then the set of test cases exercises every DD path at
least once.

The implication of this theorem is as follows: because
terminal-branch level i paths represent the "deepest buried"

iteration structure of the computer program, testing the statements

that lie at those locations assures the testing of the remainder of

the program. For example, consider the triple iteration:

DO 10 I - 1, Il
DO 10 J - 1, Jl

DO 10 K - 1, K1
<action-statement>

10 CONTINUE
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In this program fragment, the <action-statement> lies on a level-2
path residing on a terminal branch of the corresponding level i path

tree. Testing this <action-statement> at least once also tests the
remainder of the program fragment.

Path Analysis Test Avroach

This approach to path analysis includes an analysis of the data

flow paths and the logic flow paths of a program. Automated tools
are used for the data flow anlysis. The program is decomposed into
a hierarchy of functional modules. All executable logic flow paths

through a functional module which require less than or equal to k
iterations of loops are tested at least once. Usually k is taken to
be 2. This of course leaves some parts of a module untested because
of complicated loop indexing operations and dependencies between

loop bounds. But these modules can easily be identified and tested
separately.

In the following paragraphs, we will see how the control
structure of a program can be factored using a tree representation
so that certain modules of a program can be tested together. This

leads to method of testing the logic flow of the program such that
test resources can be optimally allocated to different modules.

Hierarchical Decomposition of The Tree of a Proram

The tree of the entire program with all its segments, CPCIs
(Computer Program Configuration Items), CPCs (Computer Program

Components) and modules provides a uniform structure-based
representation of the total program text. The tree representation
of the control space of a large top-down structured program follows

the hierarchical structure of the program. If a segment PI of a
program P is invoked by a statement sequence S, then the subtree

emanating from the branch corresponding to S is a tree in its own
right and corresponds to the control space of P1V

Program Factorini

When only certain modules of a program are to be tested

together, the subtree generated by the trees corresponding to these
modules can be used to do path testing. This method corresponds to
creating a special subroutine that carries all of the program text

contained in the set of modules which are to be tested. This method

is called program factoring since the effect is to break a program
into small enough pieces which can be tested thoroughly.

Weights for each branch of the tree can be defined as the
number of statements in the original progras that it represents. A
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more appropriate method is to use the weights which represent the
computational complexity of the sequence of stateents represented
by the branch. Such weights are developed in (59) and can be
related more easily to the errors in the program.

Following are guidelines for selecting a subset of the
collection of all feasbile trees for comprehensive testing of a
program (40).

(1) A minimum weight for each subtree selected must be
commensurate with the desire to accomplish treatment of the
program in easily manageable portions.

(2) Each leaf of the original tree must be included at least
once in the set of subtrees selected.

The second criterion simply assures that the testing done
accomplishes the coverage criterion already suggested as the minimum
one, i.e., covering all branches. The first criterion is intended
to equalize the difficulty o' each individual test case (or test
case class) considered. Once the feasible subtrees are found and
wei~hts are assigned, the problem of devising a good test structure
reduces to finding a balanced covering subset tree.

Optimal Allocation of Resources

The hierarchical tree structure of a program can be more fully
exploited now for optimal allocation of resources.

Define the weight of a subtree T. as the sum of the weights of
all its branches. Let the weight of subtree Ti be denoted by W1 -

A set of feasible subtrees from the tree structure can be
identified, by program factoring, which represent manageable
portions of the program that should be tested together for
functional dependency. This set of subtrees should be such that
each leaf of the original tree is included in at least one of the
subtrees.

Define a subcollection {T.:i-l ...n} to be a cover for the tree
if each leat of the original tree is included in at least one of the
subtrees in the subcollection. Define it to be a minimal cover if
no proper subset of {T. :il...,n) is a cover.

i

A minimal (Ti :i'l,...n} for the tree can now be chosen such
that5
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n17 wi
i= 1

is minimized over all the possible minimal covers. Call this
an optimal cover.

An optimal cover {T.ij:I,...n} for a program tree is nc
necessarily unique. Define the Optimum Cover {Ti:i-l...n} fix t'e
tree to be an optimal cover which minimizes

n

Such a cover would distribute weights most evenly over its
component subtrees.

After the Optimum Cover {Ti :i-l...n} has been chosen for a
program tree, optimal allocation of resources to each of its
component subtrees can be made proportionate to their individual
weights.

Path Testing in the Continuum Model

The hierarchical framework presented above supports the logical
relationships between the computer programs as they evolve in a
continuum model. A stub in an interim executable version of the
program is simply a leaf program in the program tree emanating from
the branch corresponding to the invoking statement sequence S. When
the stub is fully coded in the next version, it simply grows into a
subtree in its own right emanating from the branch corresponding to
S. Thus, a complete and effective test program can be carried out
continuously throughout software development whenever an executable
version of the program is available. The hierarchical framework
also supports the mathematical formulation and validation of test
effectiveness metrics in a natural manner. The DD paths of one
executable version are simply subpaths of a more developed version.

Consider the program P and its tree given in Fig. 2-5 of
Section 2. Once the tree of a program has been found, one can use
it to assist in constructing reasonable test paths (39) . The set of
all subtrees that includes at least one leaf corresponds roughly to
the set of all possible program flows. The first objective of
analyzing the tree is to identify the set of structurally feasible
flows. These are the ones that remain after the structurally
infeasible flows are excluded. For example, in the tree shown in
this example, it is not possible to have a flow which involves a
sequence A and any other sequence; thus, any potential subtree that
does not involve A alone is automatically structurally infeasible.
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Of the trees that remain, some may be semantically infeasible,
which means that a certain program action taken at one point results
in a set of conditions that makes some other program action
impossible. Although the obvious approach would be to examine
sequence/predicate pairs in some natural order, it turns out that
this is not really necessary. Because of the way the tree is
constructed, only certain kinds of relations need be examined in
detail. For purposes of illustration, we assume every path that is
structurally feasible is semantically feasible.

For the program in this example, there are nine feasible
subtrees; these are enumerated in Table 3-1. The subtree is
indicated simply by not.ng the program sequences that belong to it;
the column just to the right gives the weights associated with that
subtree. The four possible covers are indicated by Xs in the last
four columns. The notation Dk is used to indicate that the D
segment is actually included a variable (but finite) number of times
since D resides inside an iteration construct.

Program
Segments Cover No.

Tree No. Present Weight 1 2 3 4

I A 4 X X X X
2 B, E 10 X
3 B, Dk, E 12 X
4 B, F 5 X
5 B, Dk, F 7 X
6 C, E 8 X
7 C, Dk , E 10 X
8 C, F 3 X
9 C, Dk, F 5 X

Fig. 3-1

A very simple mechanism can be used to choose among the covers:
simply multiply the weights for each element in the cover together
and choose the product with the highest value. Other things being
equal, a candidate cover set that distributes the weights as evenly
as possible among the elements will tend to be chosen. Note that
for this particular program each cover must involve the A segment
since it is the sole member of an essential subtree.
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The computations suggested above result in the following
totals:

Product
Sub-Tree No. Cover No. Weights of Weights

1,2,9 1 4,10, 5 200
1,3,8 2 4,12, 3 144
1,4,7 3 4, 5,10 200
1,5,6 4 4, 7, 8 224.

A good starting point evident from this enumeration is the set of
subtrees (1, 5, 6) since it represents a cover and has the best
distribution of program weight.

Naturally, this example is an oversimplification, but the
points to be made are clear. Algorithms for doing all of the
computations described already exist, and while choosing an optimum
cover may be something of a stumbling block, there are certainly
plenty of algorithms around to serve as good initial choices.
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Section 4

AUTOMATED TOOLS FOR PATH ANALYSIS

Automated tools make it possible to achieve a level of
thoroughness in the testing process that would be almost impossible
to accomplish manually. The basic principle of path testing is
controlled execution of a program with known, predicted or observed,
inputs and outputs, combined with internal measurement of the
behavior of the program. The number of program discriminations
required during test .ag a large computer program may easily
approximate that required during the program implementation process.
Naturally, current test programs fall short of that. The question
is how to accomplish this process thoroughly and within the budget.
Generally the program testing process involves the repetition of a
few relatively simple procedures a large number of times. Hence,
automated test tools become necessary.

Automated testing tools are program analyzers which typically
operate on the source text of an entire software system and perform
analyses in response to user's commands. The outputs are either
reports giving the answer to user's questions or generate a specific
system setup to assist the user in performing a particular testing
action. Most of these tools like RXVP, FACES, PET, DAVE, JAVS,
SQLAB, although claimed to be operational, are still in the
development phase.

Automatic tools can be put in two broad categories: static and
dynamic.

STATIC ANALYSIS TOOLS

Static analysis tools analyze a program without regard to its
run time behavior and do not require the execution of the program.
A static analyzer proves an allegation about a program. When the
allegation is false, no instance of the feature that the allegation
is protecting against have been found. Automation here reduces the
cost and ensures that the proof of the allegation has been carried
out comprehensively. Static analysis tools like FACES, RXVP, and
DAVE apply checks to FORTRAN software systems and report allegation
violations to the user. Two of the more widely used static analysis
tools are described below:

Programming Standards Checker - applies a series of tests to
determine if the program meets a pre-detemined set of
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"standards". The standards address issues like format,
structure, organization, clarity and other related issues.

Static Allegation Analyzer - applies advanced techniques to
analyze programs statically to prove important allegations
about the program's behavior dynamically, for example, that
"all variables are set before they are used".

DYNAMIC ANALYSIS TOOLS

Dynamic testing involves a series of steps that lead from the
initial identification of test data and test objectives, through the
actual execution process, to the final stages in which the outcomes
of the test are analyzed and cataloged. There are several major
categories of automated tools that help in the dynamic testing
process. In addition, there are many tools of only secondary
importance that can be quite useful also. Generally speaking, the
role of the tools is secondary to that of the human tester, who
ultimately must decide which steps should be taken next. Following
are some categories of automated tools for path testing.

Automated Test Facility - constructs a stubbed and standard
input/output environment for a single program or a set of
programs.

Reliable Test Analyzer - checks out the reliability of a test
case in protecting against assignment and/or control errors,
thereby helping to maximize the surety attained in a rigorous
testing activity.

Robust Language Processor - automatically rewrites a program so
that it "can't fail" during execution without first telling the
user exactly how it did fail. Used during debugging and
checkout testing to (a) isolate mistakes and (b) minimize lost
execution time.

Test Planning/Status - a too! for management for the test
program. This tool provides continual status checks.

Automated Modification Analyzer - automatically analyzes a
program set for the potential impact a proposed program change
will have on the testing process, and advises what re-testing
will have to be pertormed as a consequence of the change.

Dynamic Assertion Processor - the programmer puts assertions
about the way programs are supposed to behave into the code
(they're treated as comments by the compiler), but the tool
makes them report on when the assertions are violated.
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Self-Metering Instrumentation - the programs are completely
instrumented (but logical integrity is preserved) so that all
coaceivable interesting data about each programs
execution-time behavior is collected and reported (under user
command).

Testing Difficulty Estimator - tells, according to detailed
program structure analysis, which programs in a set are the
easiest and most difficult to test and helps management control
the testing resource better.

Automated Test Data Generation - automatically generates test
data that meets pecific objectives, using advanced heuristic

processes that have high success ratios for this very difficult
problem.

Two other tools that are also important during dynamic testing
activity are test data/file generator and output comparator. A test

file generator is a stand alone package which constructs input files
containing pseudo data for use by the program being tested. An
output comparator tool is used to compare two successive versions of

a program's execution output to identify the differences.

The most often used dynamic testing tool is the execution
verifier. During the testing activity a test effectiveness standard
would be defined. The execution verifier provides the tester
specific information about the effect that a test has on the
internal control flow behavior of the program. This is usually done
with automatic instrumentation of the program text, an execution
processor and a report generator. In operation, the system follows

instructions stated by the user in analyzing and instrumenting
source programs; the instrumented versions are compiled and loaded.
During execution, the instrumentation software omits data that are
collected and recorded by the run time package. After execution,

the post-processing system analyzes the information collected by the
run-time package and produces coverage reports. The reports give
the test effectiveness measures and signal when a program component
is not tested.

Several tools which cover the entire range of dynamic testing
are currently in development. Some of these have already been in

existence for several years and are still in their initial
operational phases. JAVS, the Jovial Automatic Verification System,
was developed in 1976 by General Research Corporation and is in its
initial operational phases at Rome Air Development Center (MADC).

Another tool, SQLAB - A Software Quality Assurance Laboratory, is a

complete automated test tool for programs written in PASCAL,
FORTRAN, VPASCAL and IFTRAN. There is currently a gap between
exhaustive testing of all potential program paths and the
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capabilities of these automated tools to handle these paths through

a program. Advance research efforts are being conducted in several
areas in an attempt to help bridge this gap (57, p. 212). Most

current tools like the one described below--SQLAB, deal only with

statement testing and branch testing. But these are of invaluable
help in identifying paths of any length through a program.

SQLAB - A SOFTWARE QUALITY ASSURANCE LABORATORY

SQLAB is an automated tool, developed by GRC, for analyzing
source programs. It is claimed to be useful during all phases of
the software development cycle, but it is of special importance

during formal test and check-out of computer programs. During this
phase, input data is usually available to run the program to obtain

certain outputs. What happens in between the input and the output
is mostly invisible. SQLAB gives a visibility and an interactive
ability to observe the flow of variables and logic at different

branch points in each of the modules of the computer program. It is
claimed to include a variety of new constructs and allow the

addition of executable assertions to the program, yielding a more

comprehensive static analysis and a much more useful dynamic
analysis for execution testing and formal verification.
Documentation related to SQLAB can be obtained from GRC. This
documentation is scanty and, therefore, the tool is difficult to use
if one is unfamiliar with it.

SQLAB is a software system which reads source code text as

data, either from cards or from a card image file. The type of
processing to be pertormed on the source code is specified through
commands that are input interactively or on cards. During an

initial run, a data base or library is constructed which contains
information about each module submitted for analysis. SQLAB has

several components (OPTIONS) which extract information from this

library and produce reports.

The command which controls the type of processing to be done by

SQLAB is

OPTION(S) - <list>

The possible options are as follows:

1) LIST - produces an enhanced source listing of each module,

which shows the number of each statement, the levels

of indentation, and the DD-paths. A report from

this option is given below:
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OPTION - LIST OPTION - LIST

STAIL.ME T LISTIo4 SUO4TUTI.C bCKt I IlLN. APRAY I

NO LEVEL LALCL STATEMC(.T TEAT... rLPA,,4s

I SUL3OUTI OSCRT I NUP, AkRAY 1 I 1I
2 INTEGER ARRAY 1 100 3
3 INTEGEIA 5ALL
4 IN T 4 . 1 / IiU14 I
5 IF ( NUP .6T- MAXt.UX I 2- 33
64 13 N x VAXhUk
7 4 13 CALL ERROR ( NUN I
b ELSE
9 ! 1) , It a N P

hi C[NUIF

12 hHILE I I *LE. N 4 ' 4. 51
13 4 1 IF 'I ARRAY 3 I * 1 LC. ARRAY 4 I I 6 7

14 ( 2) . • I 1 1
15 1 , ELSL
16 ( 21 SMALL -ARRAY I I I

17 2 . ARAY I I I : ARAY)
b 12 * * a 1 2

19 ( 2) IJEXIT 2 0
2 4 23 W HliILE I NEXIT .C. 0 I i a- 91
21 3 . . IF I J GE. 1 I I 10. 11
Z2 ( , . * . IF ( SMALL *LT. ARRAY I J I J £ 12. 133
23 A) . . . . . ARRAY ( J # I ) ARRAY( 1
24 5 * . . . . = j . 1

25 ( 4) . . LLSE
2h ( 15)........................EXIT 2
27 1 4) . . . . ENOIF
2b ( 33 . . . ELSL
2's I 41 . . h1EXIT = 1
30 33 . . . EIOIF
31 2) . . ENCWIILE
32 21 . . ARRAY 4 J # 1 I = SPALL

33 21 , , I * I
3" 1 1 * COIF
35 ENLWHILE
36 CALL PRNT 4 N, ARRAY I
37 GUIPUT I I / NUM, 4 ARRAY 4 I It I uIt NUN 1 3
39 hETURN
19 IFLAG 2 *TRUE.
40 END

------------- -----------------------------------------------------------
Fig 4-1. Statement Listing

2) STATIC - produces a Static Analysis Report on the
consistency of variables and an Invocation Space

Report for each module. This analysis is designed
to uncover inconsistencies in the use of variables
and in the structure of a program. When such an
inconsistency is discovered, the analysis detects
an error or indicates the possibility of an error.
A more comprehensive analysis is possible when
assertions have been added to the user's program.

The Static Analysis Report has two sections. The
first section is a Statement Analysis and the
second section a Symbol Analysis. The Statement
Analysis reports on the following types of
checking:

e Graph checking, which identifies possible errors
in program control structure, such as

unreachable code.
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* Call checking, which validates actual
invocations against formal declarations and
notes inconsistencies in type and number of
parameters as warnings or errors.

* Mode and type checking, which identifies
possible misuse of constants and variables in
expressions, assignments, and invocations;
inconsistencies are designated as warnings or
errors.

The second section is a Symbol Analysis which lists
each symbol for which an inconsistency was found by
name, scope, type, and mode and identifies is use
(INPUT, OUTPUT, or BOTH). When a variable is set
but never used, there is a warning; however, if a
variable is used before it is set, this condition
constitutes an error. The summary tabulates the
total number of errors and warnings.

The Invocation Space Report shows all invocations,
along with the statement numbers, to and from the
specified module. It is useful in examining actual
parameter usage.

3) INPUT/OUTPUT - checks in addition to Static analysis, the
consistency of the use of variables as defined in
INPUT and OUTPUT assertions against the actual use.
The actual use is determined by the data-flow
analysis, which is a path-by-path analysis of the

use of variables.

Executable assertions make possible a dynamic
checking of the value of variables, which may

uncover errors not found with static consistency
checks. This dynamic checking includes tabulation
of the value as of global variables each time a
module is invoked.

4) UNITS - checks, in addition to static analysis, the
consistency of units that have been defined in a
UNITS assertion.

5) LOOP - analyzes paths through loop structures, searching
for particular deficiencies which may indicate an
infinite loop construct and produces a Loop
Analysis Report only when loop termination is not
assured.
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6) STUB - builds a stub library containing information about
the actual and formal parameters of modules to aid
the static analysis on stubs.

7) COVERAGE- analyzes test coverage of segments for all
instrumented modules that are invoked. There are
FOUR different OPTIONS in this category.

8) DATA - gives detailed data flow analysis including LIST,
STATIC, I/0, UNITS, and LOOP

9) INSTRUMENT - Inserts probes into the source code and
produces a DD-:aths definition report (Fig 4-2)

OPTION - INSTRUMENT OPTION - INSTRUMENT
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O I I * CALL CaLLL: I INFC I

b I . L(!.E I N I

Ii I I
I. Ab(UF .INFO. C b IS atANC OUT.

0
? I

l L.A0? S IS ORA.C. OutbA?

rI• * I.T 0 I5 9SAA.CC CuI.&T S
Is., Co.l OUO

IS OO II 1C *I. OIC C1.0 1.P~iC LLI.01l z 1CCCGTL - 11.15
• eLC.A? I IS LCLCP 0 551,

*. tI.PFT? P IS L OLP I%€&Pr

IS I SC 11019C CCC9'L( C1Sl

15KUP Ir SC PLCt C0

1? C S IF il.LI.T1 . Iu S

w.111.e IL I , .,C 11 IS LOOP LSCAPL

• t.(e0?0 1 IS LO P 0I419

it 
... tII k'h8-k 

PL O 
I

10 I~~~ ~~ I9. . . . Lt I 9 . ,.05 L?

.b 0UAIN 13 IS LOI P* (GA R
(* LWII" I% I S COP rCAHL

2: t.,CKC ,I-CLT LCC.I
Cf ICN C ILL

S i. .... -
Umu--.r... I .. . . ... .....

t C IC . .*I - T.. ......- .,,

I LLA ICrouTL 1141" L'IN 16. IS 10LC.P (CA PI

C3 CC .1 IL.b 2LE41H - I

ACI . ;~ o I. IlFO CI1,
jC C ICEIL1n. lIC.0 IC

31 ~ ~~ ICLOC
---- - - - - - - -- -- - - -- - - - -- -- -- -- ---C- - - -- -- - - - - -- -- -- -- -- - - - -- - - - - - - -- ---C-

Fig 4-2A? DD-0t Deiito ReportR (I

31 I . L~.oI * C'C65



10) SUMMARY - produces a report summarizing test coverage for
all instrumented modules. When multiT : test cases are
involved, the SUMMARY report shows dat*. from the current
test case and the ismmediately preceding test case. When

the end of the trace data is encountered, a cumulative
summary of all test cases is produced. The summary report
lists the following information (see Figure 4-3)

* Test case number

* Module names and numbers of DD-paths of length one

a Number of module invocations, number of DD-paths of

length one and percent coverage for this test case

a Cumulative number of invocations, nurber of DD-paths

traversed of length one, and percent coverage for all
test cases.

Coverage Analysis
OPTION - SUMMARY OPIO-1 SUMRY

£il all :=ZISl= S Z=l~ I s IiI ll Stl llllll ISllll Il.... ...... 2 ..................... . 1

1 7 M ,aPa8

CISt I NAME( 0.0 0*109. 3 VCCAI ? i IO CRAV (, c&t I (If 1ESTS INVOCAIONS TRAI8,1 0 COVE' AC
........... ..... ....... . .........................................................

SS I 1 6 ,8

1085,.iM 1* A~ I lVCTI 2Nt l 0.80~i I G Ill Ik 5&T~ 8NVN[ €OY.59

£I l AS 1 28 1 I .1 1 I1 I I:l 81l l II.

I 1? 361

I
2........... : fl~3::23.33:±tl 2 . ............ 2........
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Fig 4-3. Multiple Test DD-Path Summary

66

, - III 2_



11) DETAILED - produces a report which shows a breakdown of
individual DD-path coverage. A single-testcase report, and a
cumulative report which is generated after all the individual
test case reports, provide the following information:

* Module names

* Test case numbers

* List of DD-path numbers, with an indication of those
which were not executed, a graphical representation of
the number of executions, and an itemized list of the
number of executions

* Overall module coverage data

12) NOTHIT - lists DD-paths not executed for all the instrumented
modules. A NOTHIT report is generated (Fig 4-4 ) which lists
the following information:

* Module names

* Test case number

0 Number of DD-paths not traversed for this test case and
for all test cases

* DD-paths not traversed for this test case and for all
test cases.

Coverage Analysis
OPTION = NOTHIT OPTION - NOTHIT

.~~ui.I. I IS AM A :I CF U f I S tW. I. LAI I & CA T7 X.I (0L4 TLf'
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Fig 4-4. DD-Paths not Executed
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13) VGG(Verifiable Condition Generator) - The program verifier uses
the program paths of a module in generating the verification
conditions, so it is necessary to pertorm a structural analysis
of the module before setting up the remaining VCG commands.
This analysis adds to a data base library a description of the
program's structure in terms of DD-Paths. The command to

pertorm this preliminary analysis is:

OPTION - VCG.

Two Steps are required to perform Verification Condition
Generation (VCG). The first is a preliminary step to obtain
necessary data, and the second is the actual generation.

The command to generate a verification condition is

VCG,PATU - <number of paths>,<path list>

where the path list consists of a set of DD-path numbers. For
example, the command to cover the path from program entry to the
first decision statement would be

VCG,PATH - 1,1

To cover DD-paths, 2,4 in a loop construct, the command would be

VCGG,PATU - 2, 2, 4

Usually several path commands are given at once.

There are several other interactive commands that a user may
choose from a COMMAND MENU consisting of

VCG, SIMPLIFY

VCG, REPLACE

VCG, EXPRESSION

VCG, RXVP.

Although these capabilities are claimed to be operational by
GRC, users have experienced several difficulties with them. These
are at the state-of-the-art and will be most usetul for verification
of programs whenever they become available.
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SQLAB is currently installed on a CDC 7600 at the Advanced
Technology Division of Ballistic Missile Division in Huntsville, AL.
A copy of the program on tapes has been acquired by MITRE. If all
the capabilities that SQLAB was designed for were operational, it
would be the most usetul tool in existence for debugging, analysis,
testing and verification of programs in FORTRAN, IFTEAN, PASCAL and
VPASCAL (Verifiable PASCAL). SQLAB has very limited analysis
capabilities for PASCAL programs. It was designed to automatically
translate PASCAL programs into VPASCAL for comprehensive analysis of
data and logic. But the SQLAB preprocessor for this automatic
translation was deleted by GRC before submitting SQIAB to BMD. So
this translation must now be done manually. Programs written in
PASCAL have another najor disadvantage. PASCAL has not yet been
standardized and certain conventions in punch and symbology are not
uniform. The attempts to use SQLAB on the Automatic Speaker
Verification algorithm of Base Installation Security System/Entry
Control System have surfaced some of these fundamental problems.

Also SQLAB does not have the capability of analyzing program
paths that have more than two decision nodes. This part of the
analysis must be done manually, although information from the level
one DD-path analysis would reduce the task significantly.
Subsequent test effectiveness measures can then be developed to
measure test coverage at different levels of the hierarchy.
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Section 5

APPLICATION TO AIR FORCE PROGRAMS

Software Quality Assurance has been an area of serious concern
on DoD contracts. Computer resources, in particular computer
programs, or software, are usually major elements of defense
systems. Thus the quality of the defense system and its performance
are highly dependent on the quality of the software program. In the
Defense System Software FY79-83 Research and Development Technology
Plan, software quality assurance has been given special importance.
The plan has now been approved by the R & D Technology Panel on
Software Technology which was established to assist the Director of
Defense Research and Engineering in its execution. Through
representation on the R & D Technology Panel, DoD has formulated the
following specific objectives regarding software quality:

1. Development of quantitative and qualitative measures of
software quality

2. Quantification of reliability

3. Development of methods and tools for testing to determine
adherence to computer program requirements within stated
tolerance limits

4. Establishment of a uniform error collection and analysis
methodology

5. Development of tools and techniques for providing
consistency of computer programs and their specifications.

DoD SOFTWARE QUALITY REQUIREMENTS

The mandatory DoD directives, regulations and instructions
which establish policy and procedures for software quality and its
management are shown in Fig. 5-11 (11).
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The major elements of this framework are:

DAR (ASPR)
DoDD 5000.1, 5000.2, 5000.3
DoDD 5000.29
DODD 5010.19
DoDD 4155.1

The policies and procedures in these publications address the
major system acquisition process, test and evaluation, computer
resources, configuration management, and quality. The Defense
Acquisition Regulation (DAR), formerly known as the Armed Services
Procurement Regulation (ASPR) contains quality assurance policy and
procedures. The DAR contains a quality program clause for insertion
in contracts, and also states the procurement quality assurance
responsibilities of the contractor and the Government, assigning
responsibility for quality assurance performance to the contract
administration office. DoDD 5000.29 addresses software acquisition

exclusively, and includes policy specific to software reliability
and correctness. The others explicitly include software within
their scope. DODD 4155.1 is devoted exclusively to quality

assurance. A DoD level standard dealing exclusively with software

quality assurance is still under preparation and is expected to be
issued soon. DoDD 5000.3 deals exclusively with test and evaluaton.

DODD 5000.3

DoDD 5000.3, "Test and Evaluation," 11 April 1978, provides
policy for test and evaluation of defense systems over their life
cycle, and applies to software as well as hardware components. This
is a recent revision and includes a section which amplifies key

policy aspects as they apply specifically to software. DODD 5000.3
is oriented primarily toward demonstrating quality, in particular
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the pertormance aspect, for the evolving and resulting system. For
test and evaluation involving software, the DoDD 5000.3 requires
thatz

1. Quantitative and demonstratable performance objectives
shall be established for each software phase.

2. The decision to proceed to the next phase shall be based on
quantitative demonstration of adequate software
pertormance, using test and evaluaton.

3. Prior to release for operational use, software shall
undergo operational testing under realistic conditions
sufficient to provide a valid estimate of system
effectiveness and suitability in the operational
environment.

4. Operational test and evaluation agencies shall participate
in early stages of software planning and development to
insure adequate consideration of the operational
environment and operational objectives.

SOFTWARE QUALITY ASSURANCE AND SOFTWARE TESTING

In the Air Force contracting environment where the role of the
Air Force is only to monitor the contractor and to interface with
the user, software testing must bear the major burden of software
quality assurance. In spite of the new disciplines, procedures,
tools, and techniques, the software product, up until its final
functional performance, remains somewhat of an intangible and
abstract item. Project managers who can visit an engineering
laboratory and view the evolving hardware and assess its progress,
problems and risks, are unable to attain such insight into the
workings of the software being developed. Barney M. Knight says
"when it comes to software visibility, people have only one eye and
hence no depth perception". Hence, software quality assurance must
rely most heavily on data, mostly test data which is obtained by
static or dynamic analysis of the program and which gives visibility
into the structure of the program.

At present, in Air Force programs, software quality assurance
is usually implemented by:

1. Contractual specification of both computer program
requirements and requirements for a program to manage

software quality.
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2. Contractor monitoring and assessment of the effectiveness
of his implementation of the quality program, usually
through testing and reviews.

3. A software testing program which usually requires the
program to execute for a specified amount of time to
demonstrate the contractor's compliance with software
quality requirements.

THE ROLE OF PATH TESTING METHODOLOGY IN AIR FORCE PROGRAMS

As part of the QA plan, the path testing methodology fulfills
the first three objectives of the R & D Technology Plan by
quaritifying the specifications of an acceptable software test plan
and the acceptance criteria. It provides a needed organization and
discipline to the software test program which otherwise consists of
"tricks" and techniques for "black box" testing . A uniform method
of error collection is necessary for proper implementation of this
software testing methodology. The proper automated tools, if
available, can be of invaluable help. However, as discussed in the
previous section, most of these are still in their initial
operational testing and evaluation phase and as such cannot be
imposed on a contractor. Software testing commences with contract
award and continues until the computer program is accepted by the
Air Force for operational use. Achievement of the software test
objectives requires the establishment of checks and balances at each
major step in the testing program, during the generation of test
plans and procedures, during the conduct of tests and in the
analysis and summary of test results.

The methodology is compatible with the established Air Force
contracting environment and can be used during development or during
system testing. Development testing is that testing which is
pertormed by the contractor, at his discretion, to assist in the
development of the software and to provide visibility regarding the
progress of the development. Theretore, during development,
software testing should be a continuous activity. If path testing
is used, confidence levels in the correctness of any module of an
interim executable version of the program can be determined, based
on available or generated data, as discussed in Section 2 of this
document. This will assist in bringing problem areas in the
foretront, as they develop. A module should not be released until
it reaches a certain confidence level compatible with the overall
specified confidence level. The required confidence levels in the
correctness of subprograms may be based on the criticality of the
functions of that program, in such a way that an overall specified
confidence level can be achieved for the entire program. Critical
paths

73



through the program or high risk modules can be subjected to more
exhaustive testing. Decisions like whether a low confidence module
should be reprogrammed or fixed can be made. Another benefit is a
more scientific method of predicting time to completion based on the
history of errors uncovered in testing a particular module. More
realistic statistical estimates of time to completion can be
achieved using the estimation methods like "Number of Fish in a
Pond" method of Section 2, thus resulting in better planning and
management of resuurces.

The major benefits of path analysis are more evident in system
testing. A complete system test methodology based on path analysis
techniques can be developed as follows:

Effectiveness of Test Data. A great deal of real or simulated
data are generated during program development. Before the
generation of further test data, the effectiveness of this data
set should be measured. By executing the program with this
input data, TEMs of different levels can be computed. The
portions of the program not yet covered can be identified.

An Upper Bound for The Amount of Testing. The first question
that faces a test programmer is: how much testing is needed to
meet specifications. Theoretical minimum for completely
testing the program can be computed using the Holt-Paige
measure. However, in practice the real constraints are the
available time and money. Testing a minimum cover for all
program paths in every module is almost never possible. But
the theoretical limits can guide in allocating appropriate
proportions of resources to different modules.

Critical Paths and Modules. The critical paths and modules in
terms of functional performance can be separated at this time
for more exhaustive path testing.

Specifications for The Test Proaram. The specifications of the
test program should now be formulated in terms of the
acceptable level of incorrectness, the acceptable error in
estimation of this level, and the desired confidence level for

this estimation. These specifications determine the amount of
testing required in terms of the number of data flow and logic
flow paths required for the test program in order to meet these
specifications. A statistical test of hypothesis should be set
up in order to determine the acceptance criteria (as explained
in Section 2) in terms of patchwords required to fix the errors
discovered by the test program.

An equivalent way of defining the specifications of the test
program is by specifying the acceptable level of incorrectness
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of the program, the required amount of testing in terms of the
number of logic flow paths and data flow paths to be tested,
and the acceptance criteria in terms of the number of patches
required to fix the errors discovered during the test program.
The confidence level of this test can then be determined as in
Section 2.

For those modules of the program which have been identified as
critical, separate specifications can be developed which will
require more testing in terms of patchwords required to fix the
program.

Optimal Allocation of Resources. After the resources required
for the criti-cl modules have been estimated, the tree
structure of the program can be utilized for allocating the
remaining resources optimally. This is described in Section 3

in more detail.

Path Testing. DD path analysis can now be performed. Data can

be generated to execute paths at the chosen level. Portions of
the program which have not been tested at the appropriate level
can be identified and more data generated for their execution.
TENs can now be generated and the confidence level for the test
determined. If the results are not acceptable, testing may
continue until resources are exhausted or a decision can be
made to reprogram portions of the program being tested. The
observed confidence level and TENs may be compared to the
values set in the acceptance criteria.

The above test methodology presents a foundation for a
complete, disciplined and quantifiable approach to software testing.
It is very practical. It has been interfaced with the AF
procurement program and written up in a Request For Proposal (RFP)
RFP package for procurement of BISS/ECS. The lack of empirical data
and established automated tools to generate test data limit its
application at present. However, several automated tools have been
developed which are in their initial operational phases and which
will make it possible to use path analysis based testing on most AF
programs.

Some of the basic problems which remain are brought out in the
next section. These problems can, at present, be dealt with only
heuristically at best. With the aid of automated tools discussed in

Section 5, the potential of this methodology can be greatly
enhanced.
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Section 6

PROBLEMS AND TRENDS FOR THE 80s

The basic principles of software testing - repeatability,
determinism, reliability, completeness and decomposability - are
well established both in theoretical and practical terms. The
foundations of a formal theory have been laid in the fundamental
theorem of software testing stated and proven by Goodenough and
Gerhart, and its extensions by Howden. The testing methodology
presented here combines automated program analysis, reliable path
testing and hierarchical decomposition of programs to offer a
practical basis for program testing. However, many technical issues
remain. There is also the practical problem of dealing with an
immense number of paths which can be defined through any
realistically sized program. The difficulty is that the number of
tests that constitute the equivalent of program proof is either too
large or impossible to construct economically. The complexity of
the computations makes manual analysis virtually impossible, making
the use of automated tools essential. There is an intense and
growing interest in the programming community in these problems
whose solution could turn software testing into an engineering
discipline. The major problems and needs targeted for the 1980a are
identified by Ed Miller (39). These are described in the following
paragraphs under three categories: Theory, Methodology and
Automated Tools.

THEORY

Program testing has been proven to be effectively the full
equivalent of program proof of correctness provided the appropriate
auxiliary analysis can be performed to select test data. The use of
graph theory to model the control structure and data structure of a
program for selection of appropriate test data has also been
established. But the following problems still remain:

Test Data Generation. The test data generation problem, i.e.,
given any feasible DD path of a program to generate input data
which exercises that path, is unsolvable( 2 7). Much of the
current work in test data generation involves systems which
automate part of the path analysis testing strategy. In some
of the systems the user selects program paths and the computer
generates descriptions of data which cause the paths to be
followed during execution.
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Hierarchical Decomposition of a Prorasm Tree. A uniform
methodology for hierarchical decompositon of a multi-module
program tree into clusters of subtrees for effective testing is
needed which is independent of the programming language and the
machine used. Systems that convert unstructured programs into
structured programs practically use such a methodology.
However, the methodology has to be refined to be language and

machine independent and to yield a cluster of subtrees for
effective testing.

Partitionin& he Test Data. A general method of defining a
subset of a given complete input data set which is itself a
complete input data set for a particular cluster of modules of
the program is needed.

Data Flow Analysis. The theory of data flow is underutilized

for program testing. At present the only practical application
of data flow graphs is in the area of allegation checking.
Data flow graph algorithms and data structures need to be

developed to detect the errors in the data flow.

Completeness. Given a data set, a method is needed for
determining the minimum set of additional constraints that must
be met by a complimentary data set so that the test is a
reliable proof against all types of software errors.

METHODOLOGY

The following developments are needed to establish a complete
and practical methodology for formal testing:

Infeasible Paths. An infeasible path is one which cannot be
executed by any set of input data. Paths may be structurally
infeasible or semantically infeasible. A DD path is
structurally infeasible due to the structure of the program,

and semantically infeasible because a certain program action
taken at one point results in a set of conditions that make
some other program action impossible. Given a DD path, one
needs to know whether it is infeasible. This is a tricky

problem which needs to be resolved.
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Error Analysis. The goal of software testing is to detect the
errors in a computer program. Error data on large software
programs has been collected all through the seventies.
However, the nature of software errors is not yet well
understood. Surprisingly, very little is known about the
effectiveness of software testing in detecting different types
of errors. A uniform error collection methodology must be
developed so that sottware can be modelled as a potentially
erroneous process which can be used to predict failure
probability from level of testing effort.

Established Level for Minimum Test Effectiveness. Uniform and
consistent Government and industry agreement on a minimum level
of test effectiveness measure is needed. Error data at this
level can then be compared from different programs. Analysis
of such data will lead to a deeper understanding and analysis
of software errors.

The Air Force is currently considering the level k-2, which
corresponds to all branches being executed at least once, for
adoption as an Air Force standard. (39, p.404).

Experience With Testing Large Programs. Significant experience
with testing of large systems using this methodology is needed
for uncovering empirical principles that can minimize the cost
of the testing process and increase its effectiveness. Also
empirical data can be used to define categories of
specifications for a low, medium, or high level of testing.

AUTOMATED TOOLS

Most automated tools have been weak in two areas: user
interface and volume of output. Interactive tools which provide the
user with complete control of the volume of output, and which have a
simplified user interface, are currently under development. The
fourth-generation-software tools, as Ed Miller calls them, have been
developed during the past few years. These tools have brought the
theory of path testing into the domain of practical experience.
Some of the more ambitious tools like SQLAB, JAVS, etc. provide a
spectrum of support facilities (8,41,43,50,58,65). But they
are not yet completely operational so that the Air Force can make
their use mandatory in order to specify path testing for a program.

Ed Miller suggests the development of compilers which are
better able to support the needs of generalized program analysis
such as is needed in program testing activity. The PL/l compiler
goee a half step in this direction by producing a diagnostic table
which contains, among other things, a complete symbol table. Some
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of the needs of a program are simpler. For example, it would be

desirable to have all the graph structures of a program produced
automatically.

Advances in automated tools have focused on the test-data
generation problem(4, 2 5). Several automated aids have been

proposed, but not much automatically generated data has been
produced.

New automated tools which will significantly impact the
application of path testing methodology to real programs should
concentrate in the following areas:

Execution Verifiers and Coverage Analyzers. This tool category
includes all forms of program instrumentation and associated
dynamic behavior analysis to accomplish some form of automated

coverage analysis of software systems under test. There have
been many tools developed for this purpose, most of them for

FORTRAN software. There is a need for well designed,

efficient, and generalized portable coverage analyzers, as part
of compilers or as pre/post-processing free-standing systems,

which are applicable to a wide variety of languages and
machines.

Test Harness Systems. A test harness system eases the pain of
(i) setting up the test driver, (ii) generating appropriate
stub information, (iii) verifying that the program produces
correct results by comparison with predicted results, and (iv)
keeping track of a series of test data. Existing packages
claim to do this, but often place an unreasonably high burden
of work on the program tester. An efficient and powerful test
harness system is needed which eliminates the need for any work

on the part of the program tester, except possibly for
interactive-based queries by the system to the program tester.

Input/Output Generator. An input/output generator is a new

tool that currently has no parallel in the tool community, but
which does exist in prototype versions in several instances.
The idea behind the tool is simple enough: given some input
data for a program, determine which output variables are

actually computed by, or are affected by, the program as it
operates using the given input. The utility of this is that it

is somewhat easier to use than a test harness, in which all of

this information must be known by auxiliary means. In use,
such a system would make it a simple matter to know, in

general, how inputs relate to outputs. For complicated,
multiple module, software systems, 1/O generators should be
developed to identify the outputs in symbolic form that are

affected when particular inputs are supplied.
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GLOSSARY OF ACRONYMS

AF Air Force

ASPR Armed Services Procurement Regulation

BMD Ballistic Missile Centre

BISS Base Installation Security System

CDR Critical Design Review

CPC Computer Program Component

CPCI Computer Program Configuration Item

CPU Central Processing Unit

DAR Defense Acquisition Regulation

DD Path Decision-to-Decision Path

DEM Data Effectiveness Measure

DoD Department of Defense

DoDD Department of Defense Directive

ECS Entry Control System

FY Fiscal Year

GRC General Research Corporation

HIPO Hierarchical Input-Process-Output

IBM International Business Machines

I/O Input/Output

JAVS JOVIAL Automatic Verification System

MTBF Mean-Time-Between Failure

MTTR Mean-Time-To-Repair
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NASA National Aeronautics and Space Administration

PDR Preliminary Design Review

R&D Research and Development

RADC Rome Air Development Centre

RAM Reliability, Availability, Maintainability

QA Quality Assurance

SQA Software Quality Assurance

SQLAB Software Quality Assurance Laboratory

TEM Test Effectiveness Measure

VCG Verifiable Condition Generator

VPASCAL Verifiable PASCAL
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